Home
Class 11
MATHS
If : p = cot 20^(@),"then": (tan 160^(@)...

If : `p = cot 20^(@),"then": (tan 160^(@) - tan 110^(@))/(1 +tan 160^(@) * tan 110^(@))=` A)`(p^(2)-1)/(2p)` B)`(p^(2)+1)/(2p)` C)`(1-p^(2))/(2p)` D)`(2p)/(1 + p^(2))`

A

`(p^(2)-1)/(2p)`

B

`(p^(2)+1)/(2p)`

C

`(1-p^(2))/(2p)`

D

`(2p)/(1 + p^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \frac{\tan 160^\circ - \tan 110^\circ}{1 + \tan 160^\circ \tan 110^\circ} \] Given that \( p = \cot 20^\circ \). ### Step-by-Step Solution: 1. **Use the Tangent Difference Formula**: The formula for the tangent of the difference of two angles is: \[ \tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y} \] Here, let \( x = 160^\circ \) and \( y = 110^\circ \). Thus, we can rewrite the expression as: \[ \tan(160^\circ - 110^\circ) = \tan 50^\circ \] 2. **Express \(\tan 50^\circ\)**: We can express \(\tan 50^\circ\) in terms of cotangent: \[ \tan 50^\circ = \tan(90^\circ - 40^\circ) = \cot 40^\circ \] 3. **Relate \(\cot 40^\circ\) to \(\cot 20^\circ\)**: We know that: \[ \cot 40^\circ = \cot(2 \times 20^\circ) = \frac{\cot^2 20^\circ - 1}{2 \cot 20^\circ} \] Using the identity \(\cot(2\theta) = \frac{\cot^2 \theta - 1}{2 \cot \theta}\), we substitute \(\cot 20^\circ\) with \(p\): \[ \cot 40^\circ = \frac{p^2 - 1}{2p} \] 4. **Final Result**: Therefore, we have: \[ \frac{\tan 160^\circ - \tan 110^\circ}{1 + \tan 160^\circ \tan 110^\circ} = \tan 50^\circ = \cot 40^\circ = \frac{p^2 - 1}{2p} \] 5. **Conclusion**: The expression simplifies to: \[ \frac{p^2 - 1}{2p} \] Thus, the correct answer is option A: \((p^2 - 1)/(2p)\).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MCQs|175 Videos
  • STRAIGHT LINE

    MARVEL PUBLICATION|Exercise MISCELLANEOUS MCQS|160 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES AND FACTORIZATION FORMULAE

    MARVEL PUBLICATION|Exercise MCQs|101 Videos

Similar Questions

Explore conceptually related problems

If tan20=lambda ,prove that (tan160^(@)-tan110^(@))/(1+tan160^(@)*tan110^(@))=(1-lambda^(2))/(2 lambda) .

If p=tan20^@ express (tan160^@-tan110^@)/(1+tan160^@.tan110^@) in terms of p.

Knowledge Check

  • If tan 20^(@) =lamda, then (tan 160^(@) -tan 110^(@))/(1+ (tan 160^(@)) (tan 110^(@)))=

    A
    `(1+ lamda ^(2))/(2 lamda)`
    B
    `(1+ lamda^(2))/( lamda)`
    C
    `(1- lamda^(2))/(lamda)`
    D
    `(1- lamda^(2))/(2 lamda)`
  • If tan 20^(@) =p," then "(tan 160^(@)-tan 110^(@))/(1+ tan 160^(@) tan 110^(@)) is equal to

    A
    `((1-p^(2))/(2p))`
    B
    `((2p)/(1+p^(2)))`
    C
    `((1+p)/(2p))`
    D
    `((1-p)/(2p))`
  • If tan20^@ =p then (tan160^@-tan110^@)/(1+tan160^@tan110^@) is equal to

    A
    `((1-p^2)/(2p))`
    B
    `((2p)/(1+p^2))`
    C
    `((1+p)/(2p))`
    D
    `((1-p)/(2p))`
  • Similar Questions

    Explore conceptually related problems

    Find the product (p-(1)/(p))(p+(1)/(p))(p^(2)+(1)/(p^(2)))(p^(4)+(1)/(p^(4)))

    Given that tan alpha and tan beta,x^(2)-px+q=0 then value of sin^(2)(alpha+beta)=(p^(2))/(p^(2)+(1-q)^(2)) (b) (p^(2))/(p^(2)+q^(2))(q^(2))/(p^(2)+(1-q)^(2)) (d) (p^(2))/((p+q)^(2))

    If : sec 2 theta = p + tan 2 theta, "then" : sin^(2) theta= A) (p - 1 )^(2)/(2(p^(2) + 1)) B) (1)/(2)((p-1)/(p+1))^(2) C) (p^(2)-1)/(2(p^(2)+1)) D) (p^(2)-1)/(2(p+1)^(2))

    If : csc theta - cot theta = p, "then" : csc theta= A) theta + (1)/(p) B) theta - (1)/(p) C) (1)/(2) (p +(1)/(p)) D) (1)/(2) (p - (1)/(p))

    The simplest form of the expression (p^(2) - P)/(2p^(3) + 6p^(2)) + (p^(2) - 1)/(p^(2) + 3p) + (P^(2))/(p + 1) is व्यंजक (p^(2) - P)/(2p^(3) + 6p^(2)) + (p^(2) - 1)/(p^(2) + 3p) + (P^(2))/(p + 1) का सरलतम रूप है।