Home
Class 12
MATHS
If int(1)/((x+1)sqrt(x-1))dx=k.tan^(-1)s...

If `int(1)/((x+1)sqrt(x-1))dx=k.tan^(-1)sqrt((x-1)/(2))+c`
then `k = `

A

`(1)/(sqrt2)`

B

`(1)/(2)`

C

`2sqrt2`

D

`sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{(x+1)\sqrt{x-1}} \, dx \) and find the value of \( k \) in the equation \[ \int \frac{1}{(x+1)\sqrt{x-1}} \, dx = k \tan^{-1} \left( \frac{\sqrt{x-1}}{2} \right) + c, \] we will follow these steps: ### Step 1: Substitution Let \( y^2 = x - 1 \). Then, we have: \[ x = y^2 + 1. \] Differentiating both sides gives: \[ dx = 2y \, dy. \] ### Step 2: Rewrite the Integral Substituting \( x \) and \( dx \) into the integral, we have: \[ \int \frac{1}{(y^2 + 1 + 1)\sqrt{y^2}} \cdot 2y \, dy = \int \frac{2y}{(y^2 + 2)y} \, dy. \] The \( y \) in the numerator and denominator cancels out: \[ \int \frac{2}{y^2 + 2} \, dy. \] ### Step 3: Simplify the Integral The integral simplifies to: \[ 2 \int \frac{1}{y^2 + 2} \, dy. \] This can be rewritten as: \[ 2 \int \frac{1}{2} \cdot \frac{1}{\frac{y^2}{2} + 1} \, dy = \int \frac{1}{\frac{y^2}{2} + 1} \, dy. \] ### Step 4: Use the Arctangent Formula The integral \( \int \frac{1}{a^2 + u^2} \, du = \frac{1}{a} \tan^{-1} \left( \frac{u}{a} \right) + C \) applies here with \( a^2 = 2 \) (thus \( a = \sqrt{2} \)): \[ = \sqrt{2} \tan^{-1} \left( \frac{y}{\sqrt{2}} \right) + C. \] ### Step 5: Substitute Back Substituting back \( y = \sqrt{x - 1} \): \[ = \sqrt{2} \tan^{-1} \left( \frac{\sqrt{x - 1}}{\sqrt{2}} \right) + C. \] ### Step 6: Compare with Given Equation Now, we compare this with the given equation: \[ k \tan^{-1} \left( \frac{\sqrt{x - 1}}{2} \right). \] To match the forms, we can rewrite \( \tan^{-1} \left( \frac{\sqrt{x - 1}}{\sqrt{2}} \right) \) as: \[ \sqrt{2} \tan^{-1} \left( \frac{\sqrt{x - 1}}{2} \right). \] Thus, we find that: \[ k = \sqrt{2}. \] ### Final Answer Therefore, the value of \( k \) is: \[ \boxed{\sqrt{2}}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(x+1)+sqrt(x+2))dx

int_( then )^( if )(dx)/((2x+1)sqrt(x-2))dx=sqrt(a).tan^(-1)sqrt(b(x-2))+c

Knowledge Check

  • If int(2^(x))/(sqrt(1-4^(x)))dx=k.sin^(-1)(2^(x))+c , then : k=

    A
    `log2`
    B
    `log(sqrt2)`
    C
    `(1)/(2)`
    D
    `(1)/(log2)`
  • If int (2^(x))/(sqrt(1-4^(x))) dx = k sin ^(-1) (f(x)) + C then :

    A
    ` k = log 2, f(x) = 2^(x)`
    B
    `k = (1)/(log 2) , f(x) = 2^(x)`
    C
    `k = log 2, f(x) = 4^(x)`
    D
    `k = (1)/(log2) , f(x) = 4^(x)`
  • Similar Questions

    Explore conceptually related problems

    if int tan^(-1)sqrt(x)dx=u tan^(-1)sqrt(x)-sqrt(x)+c then u=

    int(dx)/((1+x^(2))sqrt(tan^(-1)x+4))

    int_(1)^(5)(sqrt(x+2sqrt(x-1))+sqrt(x-2sqrt(x-1)))dx =

    int tan^(-1)(sqrt((1-x)/(1+x))dx

    " If "int(1)/(x^(4)+1)dx=(1)/(2sqrt(2))tan^(-1)((x^(2)-1)/(sqrt(2)x))+A+c" .Then "A" is equal to "

    " If "int(1)/(x^(4)+1)dx=(1)/(2sqrt(2))tan^(-1)((x^(2)-1)/(sqrt(2)x))+A+c" .Then "A" is equal to "