Home
Class 12
MATHS
int(tanx)/(secx+tanx)dx=...

`int(tanx)/(secx+tanx)dx=`

A

`secx-tanx+c`

B

`x+secx+tanx`

C

`x-secx+tanx`

D

`x+secx-tanx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\tan x}{\sec x + \tan x} \, dx \), we can follow these steps: ### Step 1: Multiply by the Conjugate We start by multiplying the integrand by the conjugate of the denominator: \[ \frac{\tan x}{\sec x + \tan x} \cdot \frac{\sec x - \tan x}{\sec x - \tan x} \] This gives us: \[ \frac{\tan x (\sec x - \tan x)}{(\sec x + \tan x)(\sec x - \tan x)} \] ### Step 2: Simplify the Denominator The denominator simplifies as follows: \[ (\sec x + \tan x)(\sec x - \tan x) = \sec^2 x - \tan^2 x \] Using the identity \( \sec^2 x - \tan^2 x = 1 \), we have: \[ \sec^2 x - \tan^2 x = 1 \] Thus, the integral simplifies to: \[ \int \tan x (\sec x - \tan x) \, dx \] ### Step 3: Expand the Numerator Now, we expand the numerator: \[ \tan x (\sec x - \tan x) = \tan x \sec x - \tan^2 x \] So, we rewrite the integral: \[ \int (\tan x \sec x - \tan^2 x) \, dx \] ### Step 4: Split the Integral We can split the integral into two parts: \[ \int \tan x \sec x \, dx - \int \tan^2 x \, dx \] ### Step 5: Integrate Each Part 1. **Integrating \( \tan x \sec x \)**: The integral of \( \tan x \sec x \) is: \[ \int \tan x \sec x \, dx = \sec x + C_1 \] 2. **Integrating \( \tan^2 x \)**: We can use the identity \( \tan^2 x = \sec^2 x - 1 \): \[ \int \tan^2 x \, dx = \int (\sec^2 x - 1) \, dx = \int \sec^2 x \, dx - \int 1 \, dx \] This gives us: \[ \sec x - x + C_2 \] ### Step 6: Combine the Results Now we combine the results of both integrals: \[ \int \tan x \sec x \, dx - \int \tan^2 x \, dx = \sec x - (\sec x - x) = x + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{\tan x}{\sec x + \tan x} \, dx = x + \sec x - \tan x + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

(i) int(tanx)/((sec x +tanx))dx , (ii) int(1)/((1-sinx))dx

Prove that int_(0)^(pi)(xtanx)/((secx+tanx))dx=pi((pi)/(2)-1) .

Knowledge Check

  • int(1)/(a secx+b tanx)dx=

    A
    `(1)/(b)log(a+b sinx)+c`
    B
    `(1)/(a)log(a+b sinx)+c`
    C
    `(1)/(b)log(a sin x+b)+c`
    D
    `(1)/(a)log(b+a sinx)+c`
  • int(1-tanx)/(1+tanx)dx=

    A
    `sec^(2)((pi)/(4)-x)+c`
    B
    `log(secx-sinx)+c`
    C
    `log(sinx+cosx)-k`
    D
    `log[sec((pi)/(4)-x)]+c`
  • inttan^(-1)(secx+tanx)dx=?

    A
    `(pix)/(4)+(x^(2))/(4)+C`
    B
    `(pix)/(4)-(x^(2))/(4)+C`
    C
    `(1)/((1+x^(2)))+C`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    int_0^pi (xtanx)/(secx+tanx)dx

    int(1)/(secx+tanx)dx=

    intsqrt(1+2tanx(secx+tanx))dx=

    inte^(x)secx(1+tanx)dx=?

    intsinxlog(secx+tanx)dx=