Home
Class 12
MATHS
int(e^(x))/(sqrt(e^(2x)-1))dx=...

`int(e^(x))/(sqrt(e^(2x)-1))dx=`

A

`sin^(-1)(e^(x))+c`

B

`log(e^(x)-sqrt(e^(2x)-1))+c`

C

`log(e^(x)+sqrt(e^(2x)-1))+c`

D

`sec^(-1)(e^(x))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{e^x}{\sqrt{e^{2x} - 1}} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{e^x}{\sqrt{e^{2x} - 1}} \, dx \] We can rewrite \( e^{2x} \) as \( (e^x)^2 \). Thus, we have: \[ \int \frac{e^x}{\sqrt{(e^x)^2 - 1}} \, dx \] ### Step 2: Substitution Let \( t = e^x \). Then, the differential \( dt = e^x \, dx \) or \( dx = \frac{dt}{t} \). Substituting these into the integral gives: \[ \int \frac{t}{\sqrt{t^2 - 1}} \cdot \frac{dt}{t} = \int \frac{1}{\sqrt{t^2 - 1}} \, dt \] ### Step 3: Recognize the Standard Integral The integral \( \int \frac{1}{\sqrt{t^2 - 1}} \, dt \) is a standard integral, which evaluates to: \[ \ln |t + \sqrt{t^2 - 1}| + C \] ### Step 4: Substitute Back Now, we substitute back \( t = e^x \): \[ \ln |e^x + \sqrt{(e^x)^2 - 1}| + C \] This simplifies to: \[ \ln (e^x + \sqrt{e^{2x} - 1}) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{e^x}{\sqrt{e^{2x} - 1}} \, dx = \ln (e^x + \sqrt{e^{2x} - 1}) + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(e^(x))/(sqrt(4+e^(2x)))dx

int(e^(x))/(sqrt(9-e^(2x)))dx

Knowledge Check

  • int(e^(x))/(sqrt(1+e^(x)))dx=?

    A
    `2sqrt(1+e^(x))+C`
    B
    `(1)/(2)sqrt(1+e^(x))+C`
    C
    `(1)/(sqrt(1+e^(x)))+C`
    D
    none of these
  • int(e^(5x))/(sqrt(e^(5x)+1))dx=

    A
    `(2)/(5)sqrt(e^(5x)+1)+c`
    B
    `(5)/(2)sqrt(e^(5x)+1)+c`
    C
    `(1)/(5)sqrt(e^(5x)+1)+c`
    D
    `(1)/(2)sqrt(e^(5x)+1)+c`
  • Similar Questions

    Explore conceptually related problems

    int(e^(2x))/(sqrt(1-e^(2x)))dx

    int(2e^(x))/(sqrt(4-e^(2x)))dx

    Evaluate int(e^(x))/(sqrt(1-e^(2x)))dx

    " "int(e^(x))/(sqrt(4-e^(2x)))dx

    Evaluate: (i) int(e^(x))/(sqrt(4-e^(2x)))dx (ii) int(x^(2))/(sqrt(1-x^(6)))dx

    int(dx)/(sqrt(e^(2x)-1))=