Home
Class 12
MATHS
If f(x)={:{(3", if " 0 le x le 1),(4", i...

If `f(x)={:{(3", if " 0 le x le 1),(4", if " 1 lt x lt 3),(5", if " 3 le x le 10):}`, then

A

f is continuous on [0, 10] except at `x=1, 3`

B

f is continuous on [0, 10] except at `x=1`

C

f is continuous on [0, 10] except at `x=3`

D

f is continuous on [0, 10]

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the piecewise function \[ f(x) = \begin{cases} 3 & \text{if } 0 \leq x \leq 1 \\ 4 & \text{if } 1 < x < 3 \\ 5 & \text{if } 3 \leq x \leq 10 \end{cases} \] we need to check the continuity at the points where the function changes its definition, specifically at \(x = 1\) and \(x = 3\). ### Step 1: Check continuity at \(x = 1\) 1. **Find \(f(1)\)**: Since \(1\) is included in the first case, we have: \[ f(1) = 3 \] 2. **Find the left-hand limit as \(x\) approaches \(1\)**: \[ \lim_{x \to 1^-} f(x) = 3 \quad (\text{since } f(x) = 3 \text{ for } 0 \leq x \leq 1) \] 3. **Find the right-hand limit as \(x\) approaches \(1\)**: \[ \lim_{x \to 1^+} f(x) = 4 \quad (\text{since } f(x) = 4 \text{ for } 1 < x < 3) \] 4. **Compare limits and function value**: \[ \lim_{x \to 1^-} f(x) = 3 \quad \text{and} \quad \lim_{x \to 1^+} f(x) = 4 \] Since \(3 \neq 4\), \(f(x)\) is not continuous at \(x = 1\). ### Step 2: Check continuity at \(x = 3\) 1. **Find \(f(3)\)**: Since \(3\) is included in the third case, we have: \[ f(3) = 5 \] 2. **Find the left-hand limit as \(x\) approaches \(3\)**: \[ \lim_{x \to 3^-} f(x) = 4 \quad (\text{since } f(x) = 4 \text{ for } 1 < x < 3) \] 3. **Find the right-hand limit as \(x\) approaches \(3\)**: \[ \lim_{x \to 3^+} f(x) = 5 \quad (\text{since } f(x) = 5 \text{ for } 3 \leq x \leq 10) \] 4. **Compare limits and function value**: \[ \lim_{x \to 3^-} f(x) = 4 \quad \text{and} \quad \lim_{x \to 3^+} f(x) = 5 \] Since \(4 \neq 5\), \(f(x)\) is not continuous at \(x = 3\). ### Conclusion The function \(f(x)\) is continuous on the intervals \( (0, 1) \) and \( (1, 3) \) and \( (3, 10) \), but it is not continuous at \(x = 1\) and \(x = 3\). Therefore, we conclude that: - **f is continuous on \( [0, 10] \) except at \(x = 1\) and \(x = 3\)**.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL DISTRIBUTION

    NIKITA PUBLICATION|Exercise MCQS|77 Videos
  • DEFINITE INTEGRAL

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|243 Videos

Similar Questions

Explore conceptually related problems

Discuss the continuity of the function f, where f is defined by f(x){{:(3"," if 0 le x le 1),(4"," if 1lt x lt 3 ),(5"," if 3 le x le 10):}

If f(x)={:{(3x+5", for " 0 le x lt 3),(2x+8", for " 3 le x lt 5),(x+13", for " 5 le x le 10):} , then

If f(x)={:{(x", for " 0 le x lt 1),(2", for " x=1),(x+1", for " 1 lt x le 2):} , then f is

If f(x)={:{(x^(2)-4", for " 0 le x le 2),(2x+3", for " 2 lt x le 4),(x^(2)-5", for " 4 lt x le 6):} , then

If f(x)={:{(x", for " 0 le x lt 1/2),(1-x", for " 1/2 le x lt 1):} , then

If f(x) ={(4-3x,",",0 lt x le 2),(2x-6,",",2 lt x le 3),(x+5,",",3 lt x le 6):} , then f(x) is

f(x)={{:(,[x]," if "-3 lt x le -1),(,[x]," if "-1 lt x lt),(,|[-x]|," if "1 le x lt 3):}" then "{x : f(x) ge 0} is equal to :

If f(x) is continuous on [0, 8] , where f(x)={:{(x^(2)+ax+6", for " 0 le x lt 2),(3x+2", for " 2 le x le 4),(2ax+5b", for " 4 lt x le 8):} , then

If f(x) {:(=-x^(2)", if " x le 0 ), (= 5x - 4 ", if " 0 lt x le 1 ),(= 4x^(2)-3x", if " 1 lt x le 2 ):} then f is

If f(x)={:{(x-1", for " 1 le x lt 2),(2x+3", for " 2 le x le 3):} , then at x=2

NIKITA PUBLICATION-CONTINUITY-MULTIPLE CHOICE QUESTIONS
  1. If f(x)={:{(x^(2)-4", for " 0 le x le 2),(2x+3", for " 2 lt x le 4),(x...

    Text Solution

    |

  2. If f(x)={((1)/(x+1)", for " 2 le x le 4),((x+1)/(x-3)", for " 4 lt x l...

    Text Solution

    |

  3. If f(x)={:{(3", if " 0 le x le 1),(4", if " 1 lt x lt 3),(5", if " 3 l...

    Text Solution

    |

  4. If f(x)={:{(-2", for " x le -1),(2x", for " -1 lt x le 1),(2", for " x...

    Text Solution

    |

  5. f(x)={(|x|+3",","if", x le -3),(-2x",", "if", -3 lt x lt 3),(6x+2",","...

    Text Solution

    |

  6. If f(x)={(2x", for " x lt 0),(2x+1", for " x ge 0):} , then

    Text Solution

    |

  7. Function f(x)={(x-1",",x lt 2),(2x-3",", x ge 2):} is a continuous fun...

    Text Solution

    |

  8. If f(x)=(x^(3)-8)/(x^(2)+x-20), then

    Text Solution

    |

  9. If f(x)={:{((x^(2)-3x+2)/(x-3)", for " 0 le x lt 4),((x^(2)-1)/(x-2)",...

    Text Solution

    |

  10. If the function f(x)=k +x, "For" x lt1 =4x+3, "For" x ge1 is co...

    Text Solution

    |

  11. If f(x) is continuous at x=0, where f(x)={:{(x^(2)+1", for " x ge 0),...

    Text Solution

    |

  12. If f(x) is continuous at x=0, where f(x)={:{(k(x^(2)-2)", for " x le ...

    Text Solution

    |

  13. If f is continuous at x=0 , where f(x)=x^2+alpha ,x&gt;=0, f(x)=2sqrt(...

    Text Solution

    |

  14. If f(x)(x^(2)-9)/(x-3)+alpha, "for" x gt 3 =5, "for" x =3 =2x^(2)+...

    Text Solution

    |

  15. If the function f(x)= {(5", " x le 2),(ax+b", "2 ltx le ...

    Text Solution

    |

  16. If f(x) is continuous at x=1, where f(x)={:{(kx^(2)", for " x ge 1),(...

    Text Solution

    |

  17. If f(x) is continuous on [0, 8] , where f(x)={:{(x^(2)+ax+6", for " 0...

    Text Solution

    |

  18. If f(x) is continuous in [0, 3], where f(x)={:{(3x-4", for " 0 le x l...

    Text Solution

    |

  19. If f(x) continuous on its domain, where f(x)={:{(6", for " x le 2), (...

    Text Solution

    |

  20. If f (x) is continuous on 0-4, 2], defined as f(x)=6b-3ax, "for" -4 ...

    Text Solution

    |