Home
Class 12
MATHS
int(0)^(pi//2)x cosx " " dx =...

`int_(0)^(pi//2)x cosx " " dx = `

A

`pi/2-2`

B

`pi/2+2`

C

`pi/2-1`

D

`pi/2+1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{2}} x \cos x \, dx \), we will use the method of integration by parts. ### Step-by-step Solution: 1. **Identify Functions for Integration by Parts**: We choose: - \( u = x \) (which we will differentiate) - \( dv = \cos x \, dx \) (which we will integrate) 2. **Differentiate and Integrate**: Now we compute \( du \) and \( v \): - \( du = dx \) - \( v = \int \cos x \, dx = \sin x \) 3. **Apply the Integration by Parts Formula**: The formula for integration by parts is: \[ \int u \, dv = uv - \int v \, du \] Substituting our values, we get: \[ \int_{0}^{\frac{\pi}{2}} x \cos x \, dx = \left[ x \sin x \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \sin x \, dx \] 4. **Evaluate the First Term**: Now we evaluate \( \left[ x \sin x \right]_{0}^{\frac{\pi}{2}} \): - At \( x = \frac{\pi}{2} \): \[ \frac{\pi}{2} \sin\left(\frac{\pi}{2}\right) = \frac{\pi}{2} \cdot 1 = \frac{\pi}{2} \] - At \( x = 0 \): \[ 0 \cdot \sin(0) = 0 \] Thus, \( \left[ x \sin x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} - 0 = \frac{\pi}{2} \). 5. **Evaluate the Integral of \( \sin x \)**: Next, we compute \( \int_{0}^{\frac{\pi}{2}} \sin x \, dx \): \[ \int \sin x \, dx = -\cos x \] Therefore, \[ \int_{0}^{\frac{\pi}{2}} \sin x \, dx = \left[ -\cos x \right]_{0}^{\frac{\pi}{2}} = -\cos\left(\frac{\pi}{2}\right) - (-\cos(0)) = 0 - (-1) = 1 \] 6. **Combine the Results**: Now substituting back into our integration by parts formula: \[ \int_{0}^{\frac{\pi}{2}} x \cos x \, dx = \frac{\pi}{2} - 1 \] ### Final Answer: Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} x \cos x \, dx = \frac{\pi}{2} - 1 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi/6) sin2x . cosx dx

int_(0)^(pi)|cosx|dx=?

Knowledge Check

  • If int_(0)^(pi//2) log(cosx) dx=pi/2 log (1/2), then int_(0) ^(pi//2) log (sec x ) dx =

    A
    `pi/2 log (1/2)`
    B
    `1-pi/2 log (1/2)`
    C
    `1+pi/2 log (1/2)`
    D
    `pi/2 log 2`
  • If I_(1)=int_(0)^(pi//2)f(sin2x)sin x dx and I_(2)=int_(0)^(pi//4)f(cos2x)cosx dx , then I_(1)//I_(2) is equal to

    A
    1
    B
    2
    C
    `1//sqrt(2)`
    D
    `sqrt(2)`
  • int_(0)^(pi//2)(sin x cos x dx)/(cos^(2)x+3cosx+2)=

    A
    `log(8/9)`
    B
    `log(9/8)`
    C
    `log(8xx9)`
    D
    `log(3/8)`
  • Similar Questions

    Explore conceptually related problems

    int_(-pi/2)^(pi/2)cosx dx

    int_(0)^(pi//2)sqrt(1+cosx)dx

    Evaluate int_(0)^(pi//2)|sinx-cosx|dx .

    int_0^(pi/2) (Cosx - Sinx)dx

    int_(0)^(pi/2) |sinx - cosx |dx is equal to