Home
Class 12
MATHS
int(0)^(pi//2) e^(x) cos x" " dx=...

`int_(0)^(pi//2) e^(x) cos x" " dx=`

A

`1/2(1-e^(pi/2))`

B

`1/2(e^(pi/2)-1)`

C

`1-e^(pi/2)`

D

`e^(pi/2) -1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} e^x \cos x \, dx \), we will use integration by parts. Let's break down the solution step by step. ### Step 1: Set Up Integration by Parts We will use the integration by parts formula, which states: \[ \int u \, dv = uv - \int v \, du \] Let's choose: - \( u = \cos x \) (which will be differentiated) - \( dv = e^x \, dx \) (which will be integrated) ### Step 2: Differentiate and Integrate Now we need to find \( du \) and \( v \): - Differentiate \( u \): \[ du = -\sin x \, dx \] - Integrate \( dv \): \[ v = e^x \] ### Step 3: Apply Integration by Parts Now we can apply the integration by parts formula: \[ I = \left[ e^x \cos x \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} e^x (-\sin x) \, dx \] This simplifies to: \[ I = \left[ e^x \cos x \right]_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} e^x \sin x \, dx \] ### Step 4: Evaluate the Boundary Terms Now we will evaluate \( \left[ e^x \cos x \right]_{0}^{\frac{\pi}{2}} \): - At \( x = \frac{\pi}{2} \): \[ e^{\frac{\pi}{2}} \cos\left(\frac{\pi}{2}\right) = e^{\frac{\pi}{2}} \cdot 0 = 0 \] - At \( x = 0 \): \[ e^0 \cos(0) = 1 \cdot 1 = 1 \] Thus, \[ \left[ e^x \cos x \right]_{0}^{\frac{\pi}{2}} = 0 - 1 = -1 \] ### Step 5: Substitute Back into the Equation Now substituting back into our equation for \( I \): \[ I = -1 + \int_{0}^{\frac{\pi}{2}} e^x \sin x \, dx \] ### Step 6: Apply Integration by Parts Again Let’s denote the second integral as \( J = \int_{0}^{\frac{\pi}{2}} e^x \sin x \, dx \). We will apply integration by parts again: - Choose: - \( u = \sin x \) - \( dv = e^x \, dx \) Then: - \( du = \cos x \, dx \) - \( v = e^x \) Applying integration by parts: \[ J = \left[ e^x \sin x \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} e^x \cos x \, dx \] Evaluating the boundary terms: - At \( x = \frac{\pi}{2} \): \[ e^{\frac{\pi}{2}} \sin\left(\frac{\pi}{2}\right) = e^{\frac{\pi}{2}} \cdot 1 = e^{\frac{\pi}{2}} \] - At \( x = 0 \): \[ e^0 \sin(0) = 1 \cdot 0 = 0 \] Thus, \[ \left[ e^x \sin x \right]_{0}^{\frac{\pi}{2}} = e^{\frac{\pi}{2}} - 0 = e^{\frac{\pi}{2}} \] So we have: \[ J = e^{\frac{\pi}{2}} - I \] ### Step 7: Substitute \( J \) Back into the Equation for \( I \) Now substituting \( J \) back into our equation for \( I \): \[ I = -1 + (e^{\frac{\pi}{2}} - I) \] This simplifies to: \[ I + I = e^{\frac{\pi}{2}} - 1 \] Thus, \[ 2I = e^{\frac{\pi}{2}} - 1 \] Finally, we find: \[ I = \frac{e^{\frac{\pi}{2}} - 1}{2} \] ### Final Answer \[ \int_{0}^{\frac{\pi}{2}} e^x \cos x \, dx = \frac{e^{\frac{\pi}{2}} - 1}{2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) x^(2) cos x dx

Evaluate : int_(0)^(pi//2)e^(x)(sin x- cos x)dx

Knowledge Check

  • What is t int_0 ^(pi//2) e^(sin x) cos x dx equal to

    A
    `e+1`
    B
    `e-1`
    C
    `e+2`
    D
    e
  • int_(0)^(pi) e^(x) sin 2 x dx=

    A
    `2/5 ( 1-e^(pi))`
    B
    `2/5 (e^(pi-1))`
    C
    `1/5 (1-e^(pi))`
    D
    `1/5 (e^(pi)-1)`
  • Similar Questions

    Explore conceptually related problems

    int_(0)^(pi//2) e^(x) (sin x + cos x) dx

    int_(0)^( pi/2)e^(x)(cos x-sin x)dx=

    int_(0)^(pi//2) x sin x cos x dx

    int_(0)^( pi/2)sin^(2)x cos x dx

    int_(0)^(pi//2) x sin cos x dx=?

    int_(0)^( pi/2)e^(x)(sin x-cos x)dx