Home
Class 12
MATHS
int(0)^(pi//2) (sinx )/(sin x + cos x ) ...

`int_(0)^(pi//2) (sinx )/(sin x + cos x ) dx=`

A

`pi/4`

B

`pi/2`

C

`(3pi)/4`

D

`(3pi)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} \, dx, \] we can use the property of definite integrals, specifically the substitution \( x = \frac{\pi}{2} - t \). ### Step 1: Set up the integral Let \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} \, dx. \] ### Step 2: Apply the substitution Using the substitution \( x = \frac{\pi}{2} - t \), we have \( dx = -dt \). When \( x = 0 \), \( t = \frac{\pi}{2} \) and when \( x = \frac{\pi}{2} \), \( t = 0 \). Thus, the limits of integration change, and we can rewrite the integral as: \[ I = \int_{\frac{\pi}{2}}^{0} \frac{\sin\left(\frac{\pi}{2} - t\right)}{\sin\left(\frac{\pi}{2} - t\right) + \cos\left(\frac{\pi}{2} - t\right)} (-dt). \] ### Step 3: Simplify the integrand Using the identities \( \sin\left(\frac{\pi}{2} - t\right) = \cos t \) and \( \cos\left(\frac{\pi}{2} - t\right) = \sin t \), we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos t}{\cos t + \sin t} \, dt. \] ### Step 4: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} \, dx \) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\cos x + \sin x} \, dx \) Adding these two integrals: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{\sin x}{\sin x + \cos x} + \frac{\cos x}{\sin x + \cos x} \right) dx. \] ### Step 5: Simplify the combined integral The numerator simplifies to: \[ \frac{\sin x + \cos x}{\sin x + \cos x} = 1. \] Thus, we have: \[ 2I = \int_{0}^{\frac{\pi}{2}} 1 \, dx. \] ### Step 6: Evaluate the integral Now, we can evaluate the integral: \[ 2I = \left[ x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} - 0 = \frac{\pi}{2}. \] ### Step 7: Solve for \( I \) Dividing both sides by 2 gives: \[ I = \frac{\pi}{4}. \] ### Conclusion Thus, the value of the integral is \[ \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} \, dx = \frac{\pi}{4}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

Prove that: int_(0)^(pi//2) (sinx)/(sinx +cos x)d dx =(pi)/(4)

int_0^(pi//2)(sinx-cos x)/(1+sinx cos x) dx

Knowledge Check

  • The value of int_0^(pi//2) (sinx-cos x)/(1+sin x cos x ) dx is

    A
    0
    B
    1
    C
    -1
    D
    -2
  • The value of int_(0)^(pi/2)(sin^(3)x)/(sinx+cos x) dx is

    A
    `(pi-1)/(2)`
    B
    `(pi-2)/(8)`
    C
    `(pi-1)/(4)`
    D
    `(pi-2)/(4)`
  • int_(0)^(pi//2) (sin x) / ((sinx + cosx)^(2) ) dx =

    A
    `pi/2`
    B
    `pi/4`
    C
    `1/2`
    D
    `1/4`
  • Similar Questions

    Explore conceptually related problems

    int_(0)^(pi//2) (sin x -cos x)/(1+sin x cos x) dx=?

    int_(0)^(pi//2) x sin x cos x dx

    Prove that: int_(0)^( pi/2)(sin x)/(sin x-cos x)dx=(pi)/(4)

    int_(0)^(pi//2) (sin x) / ((sinx + cosx)^(3) ) dx =

    int_(0)^(pi//2)(sin x - cos x)/(1-sin x cos x)dx=