Home
Class 12
MATHS
int(0)^(pi//2) (2logsin x - log sin 2x) ...

`int_(0)^(pi//2) (2logsin x - log sin 2x) dx=`

A

`pi/2log 2`

B

`-pi/2 log 2`

C

`pi/4 log 2`

D

`(-pi)/4 log 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} (2 \log \sin x - \log \sin 2x) \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ I = \int_{0}^{\frac{\pi}{2}} (2 \log \sin x - \log \sin 2x) \, dx \] ### Step 2: Use the Property of Definite Integrals We can use the property of definite integrals that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] In our case, \( a = 0 \) and \( b = \frac{\pi}{2} \), so we have: \[ I = \int_{0}^{\frac{\pi}{2}} (2 \log \sin\left(\frac{\pi}{2} - x\right) - \log \sin(2(\frac{\pi}{2} - x))) \, dx \] ### Step 3: Simplify the Functions Using the identities \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \) and \( \sin(2(\frac{\pi}{2} - x)) = \sin(\pi - 2x) = \sin 2x \): \[ I = \int_{0}^{\frac{\pi}{2}} (2 \log \cos x - \log \sin 2x) \, dx \] ### Step 4: Combine the Two Integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} (2 \log \sin x - \log \sin 2x) \, dx \) 2. \( I = \int_{0}^{\frac{\pi}{2}} (2 \log \cos x - \log \sin 2x) \, dx \) Adding these two equations gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} (2 \log \sin x + 2 \log \cos x - 2 \log \sin 2x) \, dx \] ### Step 5: Simplify the Integral Using the logarithmic identity \( \log a + \log b = \log(ab) \): \[ 2I = \int_{0}^{\frac{\pi}{2}} \left(2 \log(\sin x \cos x) - 2 \log \sin 2x\right) \, dx \] Since \( \sin 2x = 2 \sin x \cos x \): \[ 2I = \int_{0}^{\frac{\pi}{2}} \left(2 \log(\sin x \cos x) - 2 \log(2 \sin x \cos x)\right) \, dx \] ### Step 6: Factor Out the Common Terms This can be simplified to: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left(2 \log(\sin x \cos x) - 2 \log 2 - 2 \log(\sin x \cos x)\right) \, dx \] Thus, \[ 2I = -2 \int_{0}^{\frac{\pi}{2}} \log 2 \, dx \] \[ 2I = -2 \cdot \log 2 \cdot \frac{\pi}{2} \] ### Step 7: Solve for \( I \) Dividing both sides by 2: \[ I = -\frac{\pi}{2} \log 2 \] ### Final Answer Thus, the value of the integral is: \[ \boxed{-\frac{\pi}{2} \log 2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

By using the properties of definite integrals, evaluate the integrals int_(0)^((pi)/(2))(2log sin x-log sin2x)dx

int_(0)^((pi)/(2))(2log cos x-log sin2x)dx

Knowledge Check

  • int_(0)^(pi//2) [2log sin x-log sin 2x] dx =

    A
    `pi log 2`
    B
    `-pi log 2`
    C
    `(pi)/(2) "log"(1)/(2)`
    D
    `-(pi)/(2) "log" (1)/(2)`
  • The value of int_(0)^(pi//2) (2log sin x-log sin 2x)dx , is

    A
    `(pi)/(2)log2`
    B
    `-(pi)/(2)log2`
    C
    `pi log2`
    D
    `-pi log 2`
  • int_(0)^(pi) x log sin x dx =

    A
    `(1)/(2) pi^(2) log 2`
    B
    `-(1)/(2) pi^(2) log2`
    C
    `(1)/(2) pi^(2) log ((1)/(2))`
    D
    `-(1)/(2) pi^(2) log ((1)/(2))`
  • Similar Questions

    Explore conceptually related problems

    Prove that int_(0)^(pi//2)(2logsinx-logsin2x)dx=(pi)/(2)(log2) .

    If= int_(0)^(pi//2) sin x . log (sin x ) dx = log ((K)/(e)). Then, the value of K is ….

    Evaluate int_0^(pi/2) (2logsinx-logsin2x)dx

    int_(0)^(pi//2)(2logcosx-logsin2x)\ dx=-(pi)/(2)log2

    Evaluate: int_0^(pi//2)(2logsinx-logsin2x)dx