Home
Class 12
MATHS
int(-1//2) ^(1//2) (cos x ) log ((1-x)/(...

`int_(-1//2) ^(1//2) (cos x ) log ((1-x)/(1+x)) dx = `

A

0

B

1

C

`sqrt( e)`

D

`2sqrt( e)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \[ I = \int_{-\frac{1}{2}}^{\frac{1}{2}} \cos x \log \left(\frac{1-x}{1+x}\right) \, dx, \] we will follow these steps: ### Step 1: Define the function Let \[ f(x) = \cos x \log \left(\frac{1-x}{1+x}\right). \] ### Step 2: Check if the function is odd or even To determine whether \( f(x) \) is odd or even, we need to evaluate \( f(-x) \): \[ f(-x) = \cos(-x) \log \left(\frac{1+x}{1-x}\right). \] Since \( \cos(-x) = \cos x \), we have: \[ f(-x) = \cos x \log \left(\frac{1+x}{1-x}\right). \] ### Step 3: Simplify \( f(-x) \) Using the properties of logarithms, we can rewrite \( f(-x) \): \[ f(-x) = \cos x \left(-\log \left(\frac{1-x}{1+x}\right)\right) = -\cos x \log \left(\frac{1-x}{1+x}\right) = -f(x). \] ### Step 4: Conclusion about the function Since \( f(-x) = -f(x) \), we conclude that \( f(x) \) is an odd function. ### Step 5: Use the property of definite integrals The integral of an odd function over a symmetric interval around zero is zero: \[ \int_{-a}^{a} f(x) \, dx = 0. \] Thus, we can conclude: \[ I = \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) \, dx = 0. \] ### Final Answer Therefore, the value of the integral is \[ \boxed{0}. \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|374 Videos
  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos

Similar Questions

Explore conceptually related problems

int_(-1//2)^(1//2)(cosx)[log((1-x)/(1+x))]dx is equal to

The value of ({int_(-1//2)^(1//2) cos2x.log((1+x)/(1-x))dx})/({int_(0)^(1//2)cos2x.log((1+x)/(1-x))dx}) is

Evaluate: int_(-(1)/(2))^(2)cos x log(1-x)/(1+x)dx

The integral int_(-(1)/(2))^((1)/(2))([x]+log((1+x)/(1-x)))*dx equals

The value int_(-2)^(2) (plog ((1+x)/(1-x)) + q log ((1-x)/(1+x))^(-2) + r) dx depends on the value of

int_(-(1)/(2))^((1)/(2))([x]+ln((1+x)/(1-x)))dx

int_(1)^(3)(1)/(x)(cos log|x|)dx

Evaluate : int_(1)^(2) (cos (log x))/(x) dx