Home
Class 12
MATHS
If A =((1,0,0),(2,1,0),(3,2,1)) u(1) and...

If `A =((1,0,0),(2,1,0),(3,2,1)) u_(1) and u_(2)` are the column matrices such
that `Au_(1) = ((1),(0),(0))and Au_(2) = ((0),(1),(0))" then " u_(1) + u_(2)` is equal to

A

`({:(-1),(-1),(0):})`

B

`({:(1),(-1),(-1):})`

C

`({:(-1),(1),(0):})`

D

`({:(-1),(1),(-1):})`

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRA

    CHHAYA PUBLICATION|Exercise JEE MAIN (AIEEE) ARCHIVE 2013|2 Videos
  • ALGEBRA

    CHHAYA PUBLICATION|Exercise JEE MAIN (AIEEE) ARCHIVE 2014|2 Videos
  • ALGEBRA

    CHHAYA PUBLICATION|Exercise WBJEE ARCHIVE 2016|4 Videos
  • ADJOINT AND INVERSE OF A MATRIX AND SOLUTION OF LINEAR SIMULTANEOUS EQUATIONS BY MATRIX METHOD

    CHHAYA PUBLICATION|Exercise ASSERTION-REASON TYPE|2 Videos
  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive|13 Videos

Similar Questions

Explore conceptually related problems

Let A=((1,0,0),(2,1,0),(3,2,1)) . If u_(1) and u_(2) are column matrices such that Au_(1)=((1),(0),(0)) and Au_(2)=((0),(1),(0)) , then u_(1)+u_(2) is equal to :

If A=[(1,0,0),(0,1,0),(0,0,1)] then A^2+2A=

Knowledge Check

  • If A=((-1,0),(0,2)) then the value of A^(3)-A^(2) is equal to -

    A
    I
    B
    A
    C
    2A
    D
    2I
  • If A=[(2,-1),(0,1)] and B=[(1,0),(-1,-1)] then (A+B)^(2) is not equal to -

    A
    `A^(2)+AB+BA+B^(2)`
    B
    `A^(2)+AB+BA+B^(2)I`
    C
    `A^(2)I+AB+BA+B^(2)`
    D
    `A^(2)+2AB+B^(2)`
  • Similar Questions

    Explore conceptually related problems

    For the sequence {u_(n)} if u_(1) = (1)/(4) and u_(n+1) = (u_(n))/(2+u_(n)) , find the value of (1)/(u_(50)) .

    Let A be a 3xx3 matric such that A . [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

    If B [(1,-1,1),(2,-1,0),(1,0,0)] ,does B^(-1) exist?

    If A = [(1,-1,1),(2,-1,0),(1,0,0)] find A^(2) and show that A^(2) = A^(-1) .

    For the sequence {u_(n)} if u_(1) = (1)/(2) and u_(n+1) = (u_(n))/(1+2u_(n))(n ge 1) , find the value of u_(96) .

    If PxxQ={(2,-1),(3,0),(2,1),(3,1),(2,0),(3,-1)} , find P and Q.