Home
Class 10
MATHS
If sqrt(1+x^(2))sintheta=x," Prove that ...

If `sqrt(1+x^(2))sintheta=x," Prove that "tan^(2)theta+cot^(2)theta=x^(2)+(1)/(x^(2)`

Text Solution

Verified by Experts

The correct Answer is:
`thereforetan^(2)theta+cot^(2)theta=x^(2)+(1)/(x^(2)`
Promotional Banner

Topper's Solved these Questions

  • CHALLENGING QUESTIONS

    CHETAN PUBLICATION|Exercise Mensuration|9 Videos
  • CHALLENGING QUESTIONS

    CHETAN PUBLICATION|Exercise Co-ordinate Geometry|6 Videos
  • ARITHMETIC PROGRESSION

    CHETAN PUBLICATION|Exercise ASSIGENMENT -3|10 Videos
  • CIRCLE

    CHETAN PUBLICATION|Exercise Assignment - 3 (Solve any two of the following questions):|3 Videos

Similar Questions

Explore conceptually related problems

(1+tan^(2)theta)/(1+cot^(2)theta)=

Prove that (tan^(2)theta-1)/(tan^(2)theta+1)=1-2cos^(2)theta

Prove that cot theta-tan theta=2cot 2 theta .

Prove that: cos^2 theta (1 + tan^2 theta) = 1

If sintheta=costheta then 2tan^(2)theta+sin^(2)theta-1=___ .

If tan theta+cot theta=3, then tan^(2) theta+cot^(2) theta= ____.

If 2 cos theta=x+1/x then prove that cos 2 theta=1/2 (x^(2)+1/x^(2))

Solve: 2 tan theta-cot theta=-1

Prove that , tan^(-1)(cotx)+cot^(-1) (tan x) = pi-2x

Prove: cos^2 theta + 1/(1 + cot^2 theta) = 1