Home
Class 11
CHEMISTRY
The uncertainty in momentum of an electr...

The uncertainty in momentum of an electron is `1 xx 10^-5 kg m//s`. The uncertainty in its position will be `(h = 6.62 xx 10^-34 kg m^2//s)`.

A

`1.05 xx 10^-28 m`

B

`1.05 xx 10^-26 m`

C

`5.27 xx 10^-30 m`

D

`5.25 xx 10^-28 m`

Text Solution

AI Generated Solution

The correct Answer is:
To find the uncertainty in the position of an electron given the uncertainty in its momentum, we can use the Heisenberg Uncertainty Principle, which states: \[ \Delta x \cdot \Delta p \geq \frac{h}{4\pi} \] Where: - \(\Delta x\) is the uncertainty in position, - \(\Delta p\) is the uncertainty in momentum, - \(h\) is Planck's constant (\(6.62 \times 10^{-34} \, \text{kg m}^2/\text{s}\)). ### Step-by-Step Solution: 1. **Identify the given values:** - Uncertainty in momentum, \(\Delta p = 1 \times 10^{-5} \, \text{kg m/s}\) - Planck's constant, \(h = 6.62 \times 10^{-34} \, \text{kg m}^2/\text{s}\) 2. **Apply the Heisenberg Uncertainty Principle:** \[ \Delta x \cdot \Delta p \geq \frac{h}{4\pi} \] 3. **Rearrange the equation to solve for \(\Delta x\):** \[ \Delta x \geq \frac{h}{4\pi \Delta p} \] 4. **Substitute the known values into the equation:** \[ \Delta x \geq \frac{6.62 \times 10^{-34}}{4 \times 3.14 \times (1 \times 10^{-5})} \] 5. **Calculate the denominator:** \[ 4 \times 3.14 \times (1 \times 10^{-5}) = 12.56 \times 10^{-5} \] 6. **Now compute \(\Delta x\):** \[ \Delta x \geq \frac{6.62 \times 10^{-34}}{12.56 \times 10^{-5}} = \frac{6.62}{12.56} \times 10^{-34 + 5} = \frac{6.62}{12.56} \times 10^{-29} \] 7. **Calculate the fraction:** \[ \frac{6.62}{12.56} \approx 0.527 \] 8. **Final calculation for \(\Delta x\):** \[ \Delta x \geq 0.527 \times 10^{-29} \, \text{m} = 5.27 \times 10^{-30} \, \text{m} \] ### Conclusion: The uncertainty in the position of the electron is approximately \(5.27 \times 10^{-30} \, \text{m}\). ---

To find the uncertainty in the position of an electron given the uncertainty in its momentum, we can use the Heisenberg Uncertainty Principle, which states: \[ \Delta x \cdot \Delta p \geq \frac{h}{4\pi} \] Where: - \(\Delta x\) is the uncertainty in position, ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ATOMIC STRUCTURE

    A2Z|Exercise Quantum Numbers, Orbitial'S Shape, Electronic Configuration|91 Videos
  • ATOMIC STRUCTURE

    A2Z|Exercise Section B - Assertion Reasoning|34 Videos
  • ATOMIC STRUCTURE

    A2Z|Exercise Hydrogen Spectrum|35 Videos
  • CHEMICAL BONDING AND MOLECULAR STRUCTURE

    A2Z|Exercise Section D - Chapter End Test|30 Videos

Similar Questions

Explore conceptually related problems

The uncertainty in momentum of an electron is 1 xx 10^(-5) kg mis. The uncertainty in its position will be (h = 6.62 xx 10^(- 34) kg m^(2) /s)

The uncertainty in the momentum of a particle is 6xx10^(-9)kg ms^(-1) . Calculate the uncertainty in its position.

Knowledge Check

  • The uncertainty in the momentum of an electron is 1.2x10^-5 kg ms^-1 .The uncertainty in its position will be

    A
    `1.50x10^-26m
    B
    `1.05x 10^-26m`
    C
    `5.27x10^-30 m`
    D
    `5.25x10^-28 m`
  • The uncertainity in the momentum of an electron is 1.0xx10^(-5)"kg m s"^(-1) . The uncertainity in its position will be: (h=6.626xx10^(-34)Js)

    A
    `1.05 xx 10^(-28)m`
    B
    `1.05 xx 10^(-26)m`
    C
    `5.27xx10^(-30)m`
    D
    `5.25xx10^(-28)m`
  • The uncertainity in the momentum of an electron is 1.0xx10^(-5)"kg m s"^(-1) . The uncertainity in its position will be: (h=6.626xx10^(-34)Js)

    A
    `1.05 xx 10^(-28)m`
    B
    `1.05 xx 10^(-26)m`
    C
    `5.27xx10^(-30)m`
    D
    `5.25xx10^(-28)m`
  • Similar Questions

    Explore conceptually related problems

    The uncertainty in the momentum of a particle is 6.0 xx 10^(-2) kg m s^(-1) .Calculate the uncertainty in the position

    Calculate the minimum uncertainty in velocity of a particle of mass 1.1 xx 10^(-27)kg if uncertainly in its position is 3xx 10^(-10) cm (h = 6.6 xx 10^(-34) kg m^(2) s^(-1))

    Calculate the uncertainty in the position of an electron if the uncertainty in its velocity is 5.7 xx 10^(5) m//sec ( h = 6.6 xx 10^(-34) kg m^(2) s^(-1) , mass of the electron = 9.1 xx 10^(-31) kg )

    The uncertainty in the momentum of a particle is 3.3 xx10^(-2) kg ms^(-1) the uncertainty in its position will be

    Calculate the uncertainty in velocity of a circuit ball of mass 150 g if the uncertainty in its position is 1 Å (h = 6.6 xx 10^-34 kg m^2 s^-1) .