Home
Class 11
CHEMISTRY
The measurement of the electron position...

The measurement of the electron position is associated with an uncertainty in momentum, which is equal to `1 xx 10^-18 g cm s^-1`. The uncertainty in electron velocity is (mass of an electron is `9 xx 10^-28 g`)

A

`1 xx 10^6 cm s^-1`

B

`1 xx 10^5 cm s^-1`

C

`1 xx 10^11 cm s^-1`

D

`1.1 xx 10^9 cm s^-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the uncertainty in the electron's velocity (Δv) given the uncertainty in momentum (Δp) and the mass of the electron (m). ### Step-by-Step Solution: 1. **Identify the given values:** - Uncertainty in momentum (Δp) = \(1 \times 10^{-18} \, \text{g cm s}^{-1}\) - Mass of the electron (m) = \(9 \times 10^{-28} \, \text{g}\) 2. **Use the relationship between momentum and velocity:** The momentum (p) of an object is given by the formula: \[ p = m \cdot v \] Therefore, the uncertainty in momentum (Δp) can be expressed as: \[ \Delta p = m \cdot \Delta v \] Rearranging this gives us: \[ \Delta v = \frac{\Delta p}{m} \] 3. **Substitute the known values into the equation:** \[ \Delta v = \frac{1 \times 10^{-18} \, \text{g cm s}^{-1}}{9 \times 10^{-28} \, \text{g}} \] 4. **Perform the calculation:** \[ \Delta v = \frac{1 \times 10^{-18}}{9 \times 10^{-28}} = \frac{1}{9} \times 10^{10} \, \text{cm s}^{-1} \] \[ \Delta v \approx 1.11 \times 10^{9} \, \text{cm s}^{-1} \] 5. **Final result:** The uncertainty in the electron's velocity (Δv) is approximately: \[ \Delta v \approx 1.11 \times 10^{9} \, \text{cm s}^{-1} \]

To solve the problem, we need to find the uncertainty in the electron's velocity (Δv) given the uncertainty in momentum (Δp) and the mass of the electron (m). ### Step-by-Step Solution: 1. **Identify the given values:** - Uncertainty in momentum (Δp) = \(1 \times 10^{-18} \, \text{g cm s}^{-1}\) - Mass of the electron (m) = \(9 \times 10^{-28} \, \text{g}\) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ATOMIC STRUCTURE

    A2Z|Exercise AIIMS Questions|16 Videos
  • ATOMIC STRUCTURE

    A2Z|Exercise Section D - Chapter End Test|30 Videos
  • ATOMIC STRUCTURE

    A2Z|Exercise Section B - Assertion Reasoning|34 Videos
  • CHEMICAL BONDING AND MOLECULAR STRUCTURE

    A2Z|Exercise Section D - Chapter End Test|30 Videos

Similar Questions

Explore conceptually related problems

The uncertainty in the momentum of a particle is 6.0 xx 10^(-2) kg m s^(-1) .Calculate the uncertainty in the position

The uncertainty in the momentum of a particle is 6xx10^(-9)kg ms^(-1) . Calculate the uncertainty in its position.

Knowledge Check

  • The measurement of the electron position is associated with an uncertainly in momentum , which is equal to 1xx10^(-18) "gcms"^(-1) .The uncertainty in electron velocity is , (mass of an electron is 9xx10^(-28) g)

    A
    `1xx10^5 "cm s"^(-1)`
    B
    `1xx10^11 "cm s"^(-1)`
    C
    `1.1xx10^9 "cm s"^(-1)`
    D
    `1xx10^6 "cm s"^(-1)`
  • The uncertainty in the momentum of an electron is 1.2x10^-5 kg ms^-1 .The uncertainty in its position will be

    A
    `1.50x10^-26m
    B
    `1.05x 10^-26m`
    C
    `5.27x10^-30 m`
    D
    `5.25x10^-28 m`
  • The mass of the electrons 9.8 xx 10^(-28) gram and uncertainty in the velocity equal to 2 xx 10^(-3) cm//sec . The uncertainty in the position of an electron is (h = 6.62 xx 10^(-27) ergsec)

    A
    `2.9 xx 10^(+2)cm`
    B
    `2.9 xx 10^(-2)cm`
    C
    `2.9 xx 10^(-12)cm^(-1)`
    D
    `2.9 xx 10^(+12)cm^(-1)`
  • Similar Questions

    Explore conceptually related problems

    The uncertainty in momentum of an electron is 1 xx 10^(-5) kg mis. The uncertainty in its position will be (h = 6.62 xx 10^(- 34) kg m^(2) /s)

    Calculate the particle of the uncertainty of the displacement and velocity of a electron having mass 9.1 xx 10^(-28) g

    if uncertainty in momentum is twice the uncertainty in position of an electron, then uncertainty in velocity of electron is [ħ=l/(2pi)]

    If the uncertainty in the position of an electron is zero the nucertainty in its momentum be

    The uncertainty in momentum of an electron is 1 xx 10^-5 kg m//s . The uncertainty in its position will be (h = 6.62 xx 10^-34 kg m^2//s) .