Home
Class 12
MATHS
One root of the equation ax^2+bx+c=0(an...

One root of the equation `ax^2+bx+c=0(ane0)` is zero when-

A

a=0

B

b=0

C

c=0

D

x=0

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    CHHAYA PUBLICATION|Exercise EXERCISE 5A(Very Short Answer type Question)|30 Videos
  • QUADRATIC EQUATIONS

    CHHAYA PUBLICATION|Exercise EXERCISE 5A(Short answer type question)|48 Videos
  • QUADRATIC EQUATIONS

    CHHAYA PUBLICATION|Exercise Sample Question for Competitive Exams (Assertion- Reason Type)|2 Videos
  • PROPERTIES OF TRIANGLE

    CHHAYA PUBLICATION|Exercise Assertion- Reason Type:|2 Videos
  • QUESTION PAPER -2018

    CHHAYA PUBLICATION|Exercise WBJEE|45 Videos

Similar Questions

Explore conceptually related problems

If the roots of the equation ax^(2)+bx+c=0(ane0) be equal, then

If one root of the equation ax^2+bx+c=0 (a!=0) is twice the other, than show that 2b^2=9ac .

Knowledge Check

  • IF b=c=0 then both roots of the equation ax^2+bx+c=0(ane0) are-

    A
    zero
    B
    positive
    C
    negative
    D
    imaginary
  • The roots of the equation ax^2+bx+c=0 are equal when-

    A
    `b^2-4aclt0`
    B
    `b^2-4acgt0`
    C
    `b^2-4acge0`
    D
    `b^2-4ac=0`
  • Similar Questions

    Explore conceptually related problems

    If the roots of the equation ax^(2)+bx+c=0(ane0) be reciprocal to each other, then c= _______.

    If the roots of the equation ax^2+bx+c=0(a!=0) be equal then

    If one root of the equation ax^2+bx+c=0 is the square of the other, prove that , b^3+ac^2+a^2c=3abc .

    If the roots of the equation ax^(2)+bx+c=0(ane0) be negatively reciprocal to each other, then a+c = _______ .

    Find the condition for which the roots of the quadratic equation ax^2+bx+c=0(ane0) are one positive and the other negative

    Under what condition one root of the quadratic equation ax^2 + bx + c = 0 is zero?