Home
Class 12
PHYSICS
The de broglie wavelength of an electron...

The de broglie wavelength of an electron moving with a speed of `6.6xx10^5 m//s` is of the order of `(h=6.6xx10^(-34) Js " and " m_e = 9xx10^(-31) kg)`

A

`10^(-12) m`

B

`10^(-11) m`

C

`10^(-9) m`

D

`10^(-7) m`

Text Solution

AI Generated Solution

The correct Answer is:
To find the de Broglie wavelength of an electron moving with a speed of \(6.6 \times 10^5 \, \text{m/s}\), we can use the de Broglie wavelength formula: \[ \lambda = \frac{h}{mv} \] where: - \(\lambda\) is the de Broglie wavelength, - \(h\) is the Planck constant (\(6.6 \times 10^{-34} \, \text{Js}\)), - \(m\) is the mass of the electron (\(9 \times 10^{-31} \, \text{kg}\)), - \(v\) is the speed of the electron (\(6.6 \times 10^5 \, \text{m/s}\)). ### Step-by-Step Solution: 1. **Identify the given values:** - Planck constant, \(h = 6.6 \times 10^{-34} \, \text{Js}\) - Mass of electron, \(m = 9 \times 10^{-31} \, \text{kg}\) - Speed of electron, \(v = 6.6 \times 10^5 \, \text{m/s}\) 2. **Substitute the values into the de Broglie wavelength formula:** \[ \lambda = \frac{6.6 \times 10^{-34}}{(9 \times 10^{-31}) \times (6.6 \times 10^5)} \] 3. **Calculate the denominator:** \[ mv = (9 \times 10^{-31}) \times (6.6 \times 10^5) = 5.94 \times 10^{-25} \, \text{kg m/s} \] 4. **Now substitute this value back into the equation for \(\lambda\):** \[ \lambda = \frac{6.6 \times 10^{-34}}{5.94 \times 10^{-25}} \] 5. **Perform the division:** \[ \lambda \approx 1.11 \times 10^{-9} \, \text{m} \] 6. **Express the wavelength in scientific notation:** \[ \lambda \approx 1.1 \times 10^{-9} \, \text{m} \] 7. **Determine the order of the de Broglie wavelength:** The order of the wavelength is \(10^{-9} \, \text{m}\). ### Conclusion: The de Broglie wavelength of the electron moving at the given speed is of the order of \(10^{-9} \, \text{m}\).

To find the de Broglie wavelength of an electron moving with a speed of \(6.6 \times 10^5 \, \text{m/s}\), we can use the de Broglie wavelength formula: \[ \lambda = \frac{h}{mv} \] where: - \(\lambda\) is the de Broglie wavelength, ...
Promotional Banner

Topper's Solved these Questions

  • ATOMS, MOLECULES AND NUCLEI

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|30 Videos
  • CIRCULAR MOTION

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP-20|1 Videos

Similar Questions

Explore conceptually related problems

The value of de broglie wavelength of an electron moving with a speed of 6.6xx10^5 m//s is approximately equal to [h=6.6xx10^(-34) Js " and " m_e=9xx10^(-31) kg]

The de-Broglie wavelength of an electron is 600 nm . The velocity of the electron is: (h = 6.6 xx 10^(-34) J "sec", m = 9.0 xx 10^(-31) kg)

What is the de-Broglie wavelength associated with an electron moving with a speed of 5.4 xx 10^6 ms^(-1) ?

Calculate the de-Broglie wavelength of an electron moving with one fifth of the speed of light. Neglect relativistic effects. (h=6.63 xx 10^(-34) J.s., c=3xx10^(8)m//s , mass of electron =9xx10^(-31)kg)

The de - Broglie wavelength of a ball of mass 120 g moving at a speed of "20 m s"^(-1) is (Planck's constant h=6.6xx10^(-34)Js )

What is the de broglie wavelength of an electron moving with 1/3 of the speed of light in vaccum ? (Neglect the relativistic effect ) [h=6.63xx10^(-34) J.s (M_e=9.11xx10^(-28) g)]

What is the (a) momentum (b) speed and (c) de-Broglie wavelength of an electron with kinetic energy of 120 eV. Given h=6.6xx10^(-34)Js, m_(e)=9xx10^(-31)kg , 1eV=1.6xx10^(-19)J .

if the de broglie wavelength of an electron is 0.3 nanometre, what is its kinetic energy ? [h=6.6xx10^(-34) Js, m=9xx10^(-31)kg, 1eV = 1.6xx10^(-19) J]

The de - Broglie wavelength of an electron having 80 ev of energy is nearly ( 1eV = 1.6 xx 10^(-19) J , Mass of electron = 9 xx 10^(-31) kg Plank's constant = 6.6 xx 10^(-34) J - sec )

MARVEL PUBLICATION-ATOMS, MOLECULES AND NUCLEI -TEST YOUR GRASP
  1. The de broglie wavelength of an electron moving with a speed of 6.6xx1...

    Text Solution

    |

  2. According to Rutherford's atom model, the electrons revolving round th...

    Text Solution

    |

  3. The velocity of an electron in the first Bohr orbit of hydrogen atom i...

    Text Solution

    |

  4. The radius of the orbital of electron in the hydrogen atom 0.5 Å. The ...

    Text Solution

    |

  5. The radius of hydrogen atom in its ground state is 5.3 xx 10^-11 m. Af...

    Text Solution

    |

  6. In hydrogen atom, if the difference in the energy of the electron in n...

    Text Solution

    |

  7. The series limit of Balmer series is 6400 Å. The series limit of Pasch...

    Text Solution

    |

  8. An electron jumps from the 3rd orbit to the ground orbit in the hydrog...

    Text Solution

    |

  9. If the following atoms and molecylates for the transition from n = 2 t...

    Text Solution

    |

  10. The diagram shows the energy levels for an electron in a certain atom....

    Text Solution

    |

  11. The de-Broglie wavelength of a particle having a momentum of 2xx10^(-2...

    Text Solution

    |

  12. What will be the ratio of de - Broglie wavelengths of proton and alpha...

    Text Solution

    |

  13. de-Broglie wavelength associated with an electron accelerated through ...

    Text Solution

    |

  14. An electtron and a photon have same wavelength . If p is the moment of...

    Text Solution

    |

  15. An X ray tube is operated at an accelerating potential of 40 kV. What ...

    Text Solution

    |

  16. A The wavelength of the Kalpha line ofthe characteristic X rays emitt...

    Text Solution

    |

  17. In the following reaction. .12 Mg^24 + .2He^4 rarr .14 S i^X +.0 n^1...

    Text Solution

    |

  18. The radius of germanium (Ge) nuclide is measured to be twice the radiu...

    Text Solution

    |

  19. The binding energy per nucleon is maximum in the case of.

    Text Solution

    |

  20. The binding energy per nucleon of O^16 is 7.97 MeV and that of O^17 is...

    Text Solution

    |

  21. In any fission the ratio ("mass of fission produts")/("mass of paren...

    Text Solution

    |