Home
Class 12
PHYSICS
The de broglie wavelength of an electron...

The de broglie wavelength of an electron moving with a speed of `6.6xx10^5 m//s` is of the order of `(h=6.6xx10^(-34) Js " and " m_e = 9xx10^(-31) kg)`

A

`10^(-12) m`

B

`10^(-11) m`

C

`10^(-9) m`

D

`10^(-7) m`

Text Solution

AI Generated Solution

The correct Answer is:
To find the de Broglie wavelength of an electron moving with a speed of \(6.6 \times 10^5 \, \text{m/s}\), we can use the de Broglie wavelength formula: \[ \lambda = \frac{h}{mv} \] where: - \(\lambda\) is the de Broglie wavelength, - \(h\) is the Planck constant (\(6.6 \times 10^{-34} \, \text{Js}\)), - \(m\) is the mass of the electron (\(9 \times 10^{-31} \, \text{kg}\)), - \(v\) is the speed of the electron (\(6.6 \times 10^5 \, \text{m/s}\)). ### Step-by-Step Solution: 1. **Identify the given values:** - Planck constant, \(h = 6.6 \times 10^{-34} \, \text{Js}\) - Mass of electron, \(m = 9 \times 10^{-31} \, \text{kg}\) - Speed of electron, \(v = 6.6 \times 10^5 \, \text{m/s}\) 2. **Substitute the values into the de Broglie wavelength formula:** \[ \lambda = \frac{6.6 \times 10^{-34}}{(9 \times 10^{-31}) \times (6.6 \times 10^5)} \] 3. **Calculate the denominator:** \[ mv = (9 \times 10^{-31}) \times (6.6 \times 10^5) = 5.94 \times 10^{-25} \, \text{kg m/s} \] 4. **Now substitute this value back into the equation for \(\lambda\):** \[ \lambda = \frac{6.6 \times 10^{-34}}{5.94 \times 10^{-25}} \] 5. **Perform the division:** \[ \lambda \approx 1.11 \times 10^{-9} \, \text{m} \] 6. **Express the wavelength in scientific notation:** \[ \lambda \approx 1.1 \times 10^{-9} \, \text{m} \] 7. **Determine the order of the de Broglie wavelength:** The order of the wavelength is \(10^{-9} \, \text{m}\). ### Conclusion: The de Broglie wavelength of the electron moving at the given speed is of the order of \(10^{-9} \, \text{m}\).

To find the de Broglie wavelength of an electron moving with a speed of \(6.6 \times 10^5 \, \text{m/s}\), we can use the de Broglie wavelength formula: \[ \lambda = \frac{h}{mv} \] where: - \(\lambda\) is the de Broglie wavelength, ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ATOMS, MOLECULES AND NUCLEI

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|30 Videos
  • CIRCULAR MOTION

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP-20|1 Videos

Similar Questions

Explore conceptually related problems

What is the de-Broglie wavelength associated with an electron moving with a speed of 5.4 xx 10^6 ms^(-1) ?

Calculate the de-Broglie wavelength of an electron moving with one fifth of the speed of light. Neglect relativistic effects. (h=6.63 xx 10^(-34) J.s., c=3xx10^(8)m//s , mass of electron =9xx10^(-31)kg)

Knowledge Check

  • The value of de broglie wavelength of an electron moving with a speed of 6.6xx10^5 m//s is approximately equal to [h=6.6xx10^(-34) Js " and " m_e=9xx10^(-31) kg]

    A
    21 Å
    B
    111 Å
    C
    11 Å
    D
    33 Å
  • The de-Broglie wavelength of an electron is 600 nm . The velocity of the electron is: (h = 6.6 xx 10^(-34) J "sec", m = 9.0 xx 10^(-31) kg)

    A
    `1.8 xx 10^3 m s^(-1)`
    B
    `1.2 xx 10^(5) ms^(-1)`
    C
    `5.4 xx 10^3 ms^(-1)`
    D
    `1.2 xx 10^3 ms^(-1)`
  • The de Broglie wavelength of a ball of mass 10g moving with a velocity of 10 ms^(-1) is (h = 6.626 xx 10^(-34) Js)

    A
    `6.626 xx 10^(-33) m`
    B
    `6.626 xx 10^(-29) m`
    C
    `6.626 xx 10^(-31) m`
    D
    `6.626 xx 10^(-36) m`
  • Similar Questions

    Explore conceptually related problems

    What is the (a) momentum (b) speed and (c) de-Broglie wavelength of an electron with kinetic energy of 120 eV. Given h=6.6xx10^(-34)Js, m_(e)=9xx10^(-31)kg , 1eV=1.6xx10^(-19)J .

    The de - Broglie wavelength of a ball of mass 120 g moving at a speed of "20 m s"^(-1) is (Planck's constant h=6.6xx10^(-34)Js )

    What is the de broglie wavelength of an electron moving with 1/3 of the speed of light in vaccum ? (Neglect the relativistic effect ) [h=6.63xx10^(-34) J.s (M_e=9.11xx10^(-28) g)]

    if the de broglie wavelength of an electron is 0.3 nanometre, what is its kinetic energy ? [h=6.6xx10^(-34) Js, m=9xx10^(-31)kg, 1eV = 1.6xx10^(-19) J]

    The de - Broglie wavelength of an electron having 80 ev of energy is nearly ( 1eV = 1.6 xx 10^(-19) J , Mass of electron = 9 xx 10^(-31) kg Plank's constant = 6.6 xx 10^(-34) J - sec )