Home
Class 12
MATHS
If the position vectors of the vertices ...

If the position vectors of the vertices of a triangle be `2hat(i)+4hat(j)-hat(k), 4hat(i)+5hat(j)+hat(k) and 3hat(i)+6hat(j)-3hat(k)`, then the triangle is

A

right angled

B

isosceles

C

equilateral

D

right angled isosceles

Text Solution

AI Generated Solution

The correct Answer is:
To determine the type of triangle formed by the given position vectors of its vertices, we will follow these steps: ### Step 1: Identify the Position Vectors Let the vertices of the triangle be: - A: \( \vec{A} = 2\hat{i} + 4\hat{j} - \hat{k} \) - B: \( \vec{B} = 4\hat{i} + 5\hat{j} + \hat{k} \) - C: \( \vec{C} = 3\hat{i} + 6\hat{j} - 3\hat{k} \) ### Step 2: Calculate the Vectors for the Sides of the Triangle We need to find the vectors representing the sides of the triangle: - \( \vec{AB} = \vec{B} - \vec{A} \) - \( \vec{BC} = \vec{C} - \vec{B} \) - \( \vec{CA} = \vec{A} - \vec{C} \) Calculating each: 1. **For \( \vec{AB} \)**: \[ \vec{AB} = (4\hat{i} + 5\hat{j} + \hat{k}) - (2\hat{i} + 4\hat{j} - \hat{k}) = (4 - 2)\hat{i} + (5 - 4)\hat{j} + (1 + 1)\hat{k} = 2\hat{i} + 1\hat{j} + 2\hat{k} \] 2. **For \( \vec{BC} \)**: \[ \vec{BC} = (3\hat{i} + 6\hat{j} - 3\hat{k}) - (4\hat{i} + 5\hat{j} + \hat{k}) = (3 - 4)\hat{i} + (6 - 5)\hat{j} + (-3 - 1)\hat{k} = -1\hat{i} + 1\hat{j} - 4\hat{k} \] 3. **For \( \vec{CA} \)**: \[ \vec{CA} = (2\hat{i} + 4\hat{j} - \hat{k}) - (3\hat{i} + 6\hat{j} - 3\hat{k}) = (2 - 3)\hat{i} + (4 - 6)\hat{j} + (-1 + 3)\hat{k} = -1\hat{i} - 2\hat{j} + 2\hat{k} \] ### Step 3: Calculate the Lengths of the Sides Now, we will calculate the lengths of these vectors: 1. **Length of \( AB \)**: \[ |\vec{AB}| = \sqrt{(2)^2 + (1)^2 + (2)^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3 \] 2. **Length of \( BC \)**: \[ |\vec{BC}| = \sqrt{(-1)^2 + (1)^2 + (-4)^2} = \sqrt{1 + 1 + 16} = \sqrt{18} = 3\sqrt{2} \] 3. **Length of \( CA \)**: \[ |\vec{CA}| = \sqrt{(-1)^2 + (-2)^2 + (2)^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 \] ### Step 4: Analyze the Lengths Now we have: - \( AB = 3 \) - \( BC = 3\sqrt{2} \) - \( CA = 3 \) ### Step 5: Determine the Type of Triangle From the lengths: - \( AB = CA \) (both are equal) - \( BC = 3\sqrt{2} \) To check if it is a right triangle, we can use the Pythagorean theorem: \[ AB^2 + CA^2 = 3^2 + 3^2 = 9 + 9 = 18 \] \[ BC^2 = (3\sqrt{2})^2 = 18 \] Since \( AB^2 + CA^2 = BC^2 \), it confirms that triangle ABC is a right triangle. ### Conclusion The triangle formed by the given position vectors is a right-angled isosceles triangle. ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NIKITA PUBLICATION|Exercise MCQs|404 Videos

Similar Questions

Explore conceptually related problems

If the position vector of the vertices of a triangle are hat(i)-hat(j)+2hat(k), 2hat(i)+hat(j)+hat(k) & 3hat(i)-hat(j)+2hat(k) , then find the area of the triangle.

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

Knowledge Check

  • If the position vectors of vertices of triangle ABC are 3hat(i)+hat(j)+2hat(k),hat(i)-2hat(j)+7hat(k)and-2hat(i)+3hat(j)+5hat(k), then the triangle ABC is

    A
    right angled and isosceles
    B
    right angled but not isosceles
    C
    isosceles but not right angled
    D
    equilateral
  • If [[hat(i)+4hat(j)+6hat(k), 2hat(i)+ahat(j)+3hat(k), hat(i)+2hat(j)-3hat(k)]]=0 then a=

    A
    `4`
    B
    `3`
    C
    `6`
    D
    `2`
  • The position vectors of vertices of a Delta ABC are 4hat(i)-2hat(j), hat(i)-3hat(k) and -hat(i)+5hat(j)+hat(k) respectively, then angle ABC is equal to

    A
    `pi/6`
    B
    `pi/4`
    C
    `pi/3`
    D
    `pi/2`
  • Similar Questions

    Explore conceptually related problems

    The position vectors of vertices of a Delta ABC are 4hat(i)-2hat(j), hat(i)-3hat(k) and -hat(i)+5hat(j)+hat(k) respectively, then angle ABC is equal to

    The perimeter of the triangle with sides 3hat(i)+4hat(j)+5hat(k), 4hat(i)-3hat(j)+5hat(k) and 7hat(i)+hat(j) is

    If the vectors hat(i)-2hat(j)+hat(k),ahat(i)+5hat(j)-3hat(k)and5hat(i)-9hat(j)+4hat(k) are coplanar, then the value of a is

    If the vectors 2hat(i)-hat(j)+hat(k),hat(i)+2hat(j)-3hat(k),3hat(i)+ahat(j)+5hat(k) are coplanar, then a =

    If the triangle with vertices at 2hat(i)+hat(j),2hat(j)+hat(k),mhat(k)+hat(i) has centroid hat(i)+hat(j)+hat(k), then m =