Home
Class 12
MATHS
If the position vectors of the vertices ...

If the position vectors of the vertices of a triangle be `2hat(i)+4hat(j)-hat(k), 4hat(i)+5hat(j)+hat(k) and 3hat(i)+6hat(j)-3hat(k)`, then the triangle is

A

right angled

B

isosceles

C

equilateral

D

right angled isosceles

Text Solution

AI Generated Solution

The correct Answer is:
To determine the type of triangle formed by the given position vectors of its vertices, we will follow these steps: ### Step 1: Identify the Position Vectors Let the vertices of the triangle be: - A: \( \vec{A} = 2\hat{i} + 4\hat{j} - \hat{k} \) - B: \( \vec{B} = 4\hat{i} + 5\hat{j} + \hat{k} \) - C: \( \vec{C} = 3\hat{i} + 6\hat{j} - 3\hat{k} \) ### Step 2: Calculate the Vectors for the Sides of the Triangle We need to find the vectors representing the sides of the triangle: - \( \vec{AB} = \vec{B} - \vec{A} \) - \( \vec{BC} = \vec{C} - \vec{B} \) - \( \vec{CA} = \vec{A} - \vec{C} \) Calculating each: 1. **For \( \vec{AB} \)**: \[ \vec{AB} = (4\hat{i} + 5\hat{j} + \hat{k}) - (2\hat{i} + 4\hat{j} - \hat{k}) = (4 - 2)\hat{i} + (5 - 4)\hat{j} + (1 + 1)\hat{k} = 2\hat{i} + 1\hat{j} + 2\hat{k} \] 2. **For \( \vec{BC} \)**: \[ \vec{BC} = (3\hat{i} + 6\hat{j} - 3\hat{k}) - (4\hat{i} + 5\hat{j} + \hat{k}) = (3 - 4)\hat{i} + (6 - 5)\hat{j} + (-3 - 1)\hat{k} = -1\hat{i} + 1\hat{j} - 4\hat{k} \] 3. **For \( \vec{CA} \)**: \[ \vec{CA} = (2\hat{i} + 4\hat{j} - \hat{k}) - (3\hat{i} + 6\hat{j} - 3\hat{k}) = (2 - 3)\hat{i} + (4 - 6)\hat{j} + (-1 + 3)\hat{k} = -1\hat{i} - 2\hat{j} + 2\hat{k} \] ### Step 3: Calculate the Lengths of the Sides Now, we will calculate the lengths of these vectors: 1. **Length of \( AB \)**: \[ |\vec{AB}| = \sqrt{(2)^2 + (1)^2 + (2)^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3 \] 2. **Length of \( BC \)**: \[ |\vec{BC}| = \sqrt{(-1)^2 + (1)^2 + (-4)^2} = \sqrt{1 + 1 + 16} = \sqrt{18} = 3\sqrt{2} \] 3. **Length of \( CA \)**: \[ |\vec{CA}| = \sqrt{(-1)^2 + (-2)^2 + (2)^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 \] ### Step 4: Analyze the Lengths Now we have: - \( AB = 3 \) - \( BC = 3\sqrt{2} \) - \( CA = 3 \) ### Step 5: Determine the Type of Triangle From the lengths: - \( AB = CA \) (both are equal) - \( BC = 3\sqrt{2} \) To check if it is a right triangle, we can use the Pythagorean theorem: \[ AB^2 + CA^2 = 3^2 + 3^2 = 9 + 9 = 18 \] \[ BC^2 = (3\sqrt{2})^2 = 18 \] Since \( AB^2 + CA^2 = BC^2 \), it confirms that triangle ABC is a right triangle. ### Conclusion The triangle formed by the given position vectors is a right-angled isosceles triangle. ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NIKITA PUBLICATION|Exercise MCQs|404 Videos

Similar Questions

Explore conceptually related problems

If the position vector of the vertices of a triangle are hat(i)-hat(j)+2hat(k), 2hat(i)+hat(j)+hat(k) & 3hat(i)-hat(j)+2hat(k) , then find the area of the triangle.

If [[hat(i)+4hat(j)+6hat(k), 2hat(i)+ahat(j)+3hat(k), hat(i)+2hat(j)-3hat(k)]]=0 then a=

The position vectors of vertices of a Delta ABC are 4hat(i)-2hat(j), hat(i)-3hat(k) and -hat(i)+5hat(j)+hat(k) respectively, then angle ABC is equal to

The perimeter of the triangle with sides 3hat(i)+4hat(j)+5hat(k), 4hat(i)-3hat(j)+5hat(k) and 7hat(i)+hat(j) is

If the vectors hat(i)-2hat(j)+hat(k),ahat(i)+5hat(j)-3hat(k)and5hat(i)-9hat(j)+4hat(k) are coplanar, then the value of a is

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

NIKITA PUBLICATION-VECTOR-MULTIPLE CHOICE QUESTIONS
  1. If the angle between vec(a) and vec(b) is (pi)/(6) and vec(c)=vec(a)+3...

    Text Solution

    |

  2. If overline(b)=overline(a)-4overline(c) and angle between overline(a) ...

    Text Solution

    |

  3. If the position vectors of the vertices of a triangle be 2hat(i)+4hat(...

    Text Solution

    |

  4. If 7hat(j)+10hat(k), -hat(i)+6hat(j)+6hat(k) and -4hat(i)+9hat(j)+6hat...

    Text Solution

    |

  5. Let alpha,beta,gamma be distinct real numbers. The points with positio...

    Text Solution

    |

  6. The perimeter of the triangle with sides 3hat(i)+4hat(j)+5hat(k), 4hat...

    Text Solution

    |

  7. The perimeter of the triangle whose vertices have the position vectors...

    Text Solution

    |

  8. Let overline(lambda)=overline(a)times(overline(b)+overline(c)), overli...

    Text Solution

    |

  9. |[overline(a)*overline(a), overline(a)*overline(b)], [overline(a)*over...

    Text Solution

    |

  10. The value of |[overline(a)*overline(a), overline(a)*overline(b), overl...

    Text Solution

    |

  11. If overline(a), overline(b), overline(c) be three vecotrs such that ov...

    Text Solution

    |

  12. If |overline(a)|=50 and overline(b)=6hat(i)-8hat(j)-(15)/(2)hat(k) are...

    Text Solution

    |

  13. If overline(a) and overline(b) are the position vectors of the points ...

    Text Solution

    |

  14. If the vectors 3hat(i)-5hat(j)+hat(k)and9hat(i)-15hat(j)+phat(k) are c...

    Text Solution

    |

  15. If the vectors 2hat(i)-qhat(j)+3hat(k)and4hat(i)-5hat(j)+6hat(k) are c...

    Text Solution

    |

  16. The value of k for which the vectors overline(a)=hat(i)-hat(j) and ove...

    Text Solution

    |

  17. Let overline(a) and overline(b) be non-collinear. If overline(c)=(x-2)...

    Text Solution

    |

  18. If the points A(3, 2, -4), B(9, 8, -10) and C(-2, -3. p) are collinear...

    Text Solution

    |

  19. If the points A(4, 5, 2), B(3, 2, p) and C(5, 8, 0) are collinear , th...

    Text Solution

    |

  20. If the points A(2,1,1,),B(0,-1,4)andC(k,3,-2) are collinear, then k= ....

    Text Solution

    |