Home
Class 12
MATHS
hat(i)*(hat(j)timeshat(k))+hat(j)*(hat(k...

`hat(i)*(hat(j)timeshat(k))+hat(j)*(hat(k)timeshat(i))+hat(k)*(hat(i)timeshat(j))=`

A

`0`

B

`1`

C

`2`

D

`3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{k} \times \hat{i}) + \hat{k} \cdot (\hat{i} \times \hat{j}) \), we will use the properties of the dot product and the cross product of the unit vectors \( \hat{i} \), \( \hat{j} \), and \( \hat{k} \). ### Step-by-Step Solution: 1. **Evaluate \( \hat{j} \times \hat{k} \)**: \[ \hat{j} \times \hat{k} = \hat{i} \] This is because the cross product of \( \hat{j} \) and \( \hat{k} \) follows the right-hand rule. **Hint**: Remember the right-hand rule for cross products: \( \hat{i} \times \hat{j} = \hat{k} \), \( \hat{j} \times \hat{k} = \hat{i} \), and \( \hat{k} \times \hat{i} = \hat{j} \). 2. **Substitute into the expression**: \[ \hat{i} \cdot (\hat{j} \times \hat{k}) = \hat{i} \cdot \hat{i} = 1 \] 3. **Evaluate \( \hat{k} \times \hat{i} \)**: \[ \hat{k} \times \hat{i} = \hat{j} \] Again, using the right-hand rule. **Hint**: Use the cyclic nature of the unit vectors to determine the result of cross products. 4. **Substitute into the expression**: \[ \hat{j} \cdot (\hat{k} \times \hat{i}) = \hat{j} \cdot \hat{j} = 1 \] 5. **Evaluate \( \hat{i} \times \hat{j} \)**: \[ \hat{i} \times \hat{j} = \hat{k} \] **Hint**: The order of the vectors in a cross product matters; reversing them changes the sign. 6. **Substitute into the expression**: \[ \hat{k} \cdot (\hat{i} \times \hat{j}) = \hat{k} \cdot \hat{k} = 1 \] 7. **Combine all parts of the expression**: \[ 1 + 1 + 1 = 3 \] ### Final Answer: \[ \hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{k} \times \hat{i}) + \hat{k} \cdot (\hat{i} \times \hat{j}) = 3 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NIKITA PUBLICATION|Exercise MCQs|404 Videos

Similar Questions

Explore conceptually related problems

Write the value of hat(i).(hat(j)xxhat(k))+hat(j).(hat(i)xxhat(k))+hat(k).(hat(i)xxhat(j)) .

Find the value of : (i) (hat(i) xxhat(j))*hat (k) + hat(i)* hat(j) (ii) (hat(k) xx hat(j))* hat(i) +hat(j)* hat(k) hat(i) xx (hat(j) + hat(k) )+hat(j) xx(hat(k) +hat(i))+ hat(k) xx (hat(i)+hat(j))

Knowledge Check

  • If a=hat(i)+hat(j)+hat(k) and b=hat(i)-hat(j) , then the vectors (a*hat(i))hat(i)+(a*hat(j))hat(j)+(a*hat(k))hat(k), (b*hat(i))hat(i)+(b*hat(j))hat(j)+(b*hat(k))hat(k) and hat(i)+hat(j)-2hat(k)

    A
    are mutually perpendicular
    B
    are coplanar
    C
    form a parallepiped of volume 3 units
    D
    form a parallelopiped of volume 6 units
  • If the four points with position vectors -2hat(i)+hat(j)+hat(k),hat(i)+hat(j)+hat(k),hat(j)-hat(k)andlamdahat(j)+hat(k) are coplanar, then lamda=

    A
    1
    B
    2
    C
    -1
    D
    0
  • Let a=hat(i)+hat(j)+hat(k), b=-hat(i)+hat(j)+hat(k), c=hat(i)-hat(j)+hat(k) and d=hat(i)+hat(j)-hat(k) . Then, the line of intersection of planes one determined by a, b and other determined by c, d is perpendicular to

    A
    X-axis
    B
    Y-axis
    C
    Both X and Y axes
    D
    Both y and z-axes
  • Similar Questions

    Explore conceptually related problems

    hat i.(2hat j times3hat k)+hat j.(2hat k times3hat i)+hat k.(2hat i times3hat j) is equal to

    Prove that (i) [hat(i)hat(j)hat(k)]=[hat(j)hat(k)hat(i)]=[hat(k)hat(j)hat(i)]=1 (ii) [hat(i)hat(k)hat(j)]=[hat(k)hat(j)hat(i)]=[hat(j)hat(i)hat(k)]=1

    Show that the lines vec(r) =(hat(i) +2hat(j) +hat(k)) +lambda (hat(i)-hat(j)+hat(k)) " and " vec(r ) =(hat(i) +hat(j) -hat(k)) + mu (hat(i)- hat(j) + 2hat(k)) Do not intersect .

    (hat(k)xx hat(j)).hat(i)+hat(j).hat(k)= ………….

    vec(r )=(hat(i) +2hat(j) +hat(k)) + lambda(hat(i)-hat(j) + hat(k)) vec(r )=(2hat(i) -hat(j) -hat(k)) + lambda(2hat(i) + hat(j) +2hat(k))