Home
Class 12
MATHS
If y= sqrt ((1+sin x) /( 1-sin x) ,)th...

If ` y= sqrt ((1+sin x) /( 1-sin x) ,)then (dy)/(dx) =`

A

` ( -1)/( 1-sin x ) `

B

` (1)/( 1-sin x) `

C

` (-2)/( 1-sin x ) `

D

` (2)/( 1-sin x ) `

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sqrt{\frac{1 + \sin x}{1 - \sin x}} \), we will follow these steps: ### Step 1: Rationalize the expression We start with the expression for \( y \): \[ y = \sqrt{\frac{1 + \sin x}{1 - \sin x}} \] To simplify this, we can multiply the numerator and denominator by \( 1 + \sin x \): \[ y = \sqrt{\frac{(1 + \sin x)(1 + \sin x)}{(1 - \sin x)(1 + \sin x)}} \] This simplifies to: \[ y = \sqrt{\frac{(1 + \sin x)^2}{1 - \sin^2 x}} \] ### Step 2: Simplify using trigonometric identities Using the identity \( 1 - \sin^2 x = \cos^2 x \), we can rewrite the expression: \[ y = \sqrt{\frac{(1 + \sin x)^2}{\cos^2 x}} \] Now, we can take the square root: \[ y = \frac{1 + \sin x}{\cos x} \] ### Step 3: Rewrite the expression We can separate the terms: \[ y = \frac{1}{\cos x} + \frac{\sin x}{\cos x} \] This simplifies to: \[ y = \sec x + \tan x \] ### Step 4: Differentiate the expression Now, we differentiate \( y \): \[ \frac{dy}{dx} = \frac{d}{dx}(\sec x) + \frac{d}{dx}(\tan x) \] Using the derivatives \( \frac{d}{dx}(\sec x) = \sec x \tan x \) and \( \frac{d}{dx}(\tan x) = \sec^2 x \), we get: \[ \frac{dy}{dx} = \sec x \tan x + \sec^2 x \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \sec x \tan x + \sec^2 x \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

y=log ((1-sin x )/(1+sin x )),then (dy)/(dx) =

Ify,=sqrt(((1+cos x)/(2))), provethat (dy)/(dx)=-(1)/(2)(sin x)/(2) If y,=sqrt((1+sin x)/(1-sin x)), prove that cos x(dy)/(dx)=y

Knowledge Check

  • If y = sqrt((1 + sinx)/(1 - sin x)) " then " (dy)/(dx) = ?

    A
    `(1)/(2) sec^(2)((pi)/(4) - (x)/2)`
    B
    `(1)/(2) "cosec"^(2) ((pi)/(4) - (x)/(2))`
    C
    `(1)/(2) "cosec"((pi)/(4) - (x)/(2)) cot ((pi)/(4) - (x)/(2))`
    D
    none of these
  • If y= sqrt ((1-sin 10 x )/( 1+sin 10x ) ) ,then (dy)/(dx) =

    A
    ` 5sec ^(2) ((pi)/( 4)-5x)`
    B
    ` -5sec ^(2) ((pi)/(4) -5x)`
    C
    ` 5sec ^(2) ((pi)/( 4)+5x) `
    D
    ` -5sec ^(2) ((pi)/(4) +5x)`
  • If y= sqrt (sin x +sqrt cos x ), then (dy)/(dx) =

    A
    ` (2cos x sqrt (cos x )-sin x )/( 4sqrt (cosx sqrt sin x +sqrtcos x ))`
    B
    ` (2cos x sqrt (cos x )+ sin x )/( 4sqrt (cosx sqrt sin x +sqrtcos x ))`
    C
    ` (2cos x sqrt (cos x )- sin x )/( 2sqrt (cosx sqrt sin x +sqrtcos x ))`
    D
    ` (2cos x sqrt (cos x )+ sin x )/( 2sqrt (cosx sqrt sin x +sqrtcos x ))`
  • Similar Questions

    Explore conceptually related problems

    If y= y=sqrt((1-sin 2x )/(1+sin 2 x)) prove that (dy)/(dx)+sec^2(pi/4-x)=0.

    If y=sqrt sin x,then (dy)/(dx) =

    If y= (a^(sqrt x) ) ^(sin x) ,then (dy)/(dx) =

    If y= sin sqrt ( sin sqrt x) ,then (dy)/( dx) =

    If y=tan^(-1) sqrt((1-sin 4x)/(1+sin 4x)),"then " dy/dx=