Home
Class 12
MATHS
If y=x^(logx) ,then (dy)/(dx)=...

If ` y=x^(logx) ,then (dy)/(dx)=`

A

` 2x ^((logx-1)) logx `

B

` x^((logx-1))`

C

` (2)/( xlogx )`

D

` x^((logx-1))logx `

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = x^{\log x} \), we will follow these steps: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of both sides to simplify the expression: \[ \log y = \log(x^{\log x}) \] ### Step 2: Use the logarithmic identity Using the property of logarithms that states \( \log(a^b) = b \log a \), we can rewrite the equation: \[ \log y = \log x \cdot \log x = (\log x)^2 \] ### Step 3: Differentiate both sides Now we differentiate both sides with respect to \( x \). We will use the chain rule on the left side and the product rule on the right side: \[ \frac{d}{dx}(\log y) = \frac{1}{y} \frac{dy}{dx} \] For the right side, we differentiate \( (\log x)^2 \): \[ \frac{d}{dx}((\log x)^2) = 2 \log x \cdot \frac{d}{dx}(\log x) = 2 \log x \cdot \frac{1}{x} \] ### Step 4: Set the derivatives equal Now we equate the derivatives: \[ \frac{1}{y} \frac{dy}{dx} = \frac{2 \log x}{x} \] ### Step 5: Solve for \( \frac{dy}{dx} \) To isolate \( \frac{dy}{dx} \), we multiply both sides by \( y \): \[ \frac{dy}{dx} = y \cdot \frac{2 \log x}{x} \] ### Step 6: Substitute back for \( y \) Recall that \( y = x^{\log x} \), so we substitute this back into our equation: \[ \frac{dy}{dx} = x^{\log x} \cdot \frac{2 \log x}{x} \] ### Step 7: Simplify the expression We can simplify the expression: \[ \frac{dy}{dx} = 2 x^{\log x - 1} \log x \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = 2 x^{\log x - 1} \log x \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y= (sin x)^(logx ),then (dy)/(dx)=

y=logx/(a+bx) then (dy)/(dx)

Knowledge Check

  • If y= (log x) ^(logx) ,then (dy)/(dx)=

    A
    ` y( 1+log (log x) )`
    B
    ` y(1+ logx )`
    C
    ` (y)/(x) (1+log (logx ) )`
    D
    ` (y)/(x) (1+log x)`
  • If y=e^(1+logx)," then: "(dy)/(dx)

    A
    e
    B
    1
    C
    0
    D
    `logx*e^(logex)`
  • If y= ( log sin x) (logx ) ,then (dy)/(dx)

    A
    ` (log (sin x))/( x) +(log x )(cotx) `
    B
    ` (log (sin x))/( x) -(log x )(cotx) `
    C
    ` (log (sin x))/( x)+(log x )(tan x) `
    D
    ` (log (sin x))/( x)-(log x )(tan x) `
  • Similar Questions

    Explore conceptually related problems

    If y=(logx)^3 , then dy/dx=?

    If y=e^(x^2+logx) , then dy/dx=?

    If y=5^(x^3+logx) , then dy/dx=?

    If y=f((2x+3)/(3-2x)) and f(x)=sin(logx) , then (dy)/(dx)=

    If y=x^((logx)^(log(logx))) , then (dy)/(dx) is