Home
Class 12
MATHS
If y= (log x) ^(logx) ,then (dy)/(dx)=...

If ` y= (log x) ^(logx) ,then (dy)/(dx)=`

A

` y( 1+log (log x) )`

B

` y(1+ logx )`

C

` (y)/(x) (1+log (logx ) )`

D

` (y)/(x) (1+log x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( y = (\log x)^{\log x} \) and find \( \frac{dy}{dx} \), we can follow these steps: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of both sides to simplify the expression: \[ \log y = \log((\log x)^{\log x}) \] ### Step 2: Apply the logarithmic power rule Using the property of logarithms that states \( \log(a^b) = b \log a \), we can rewrite the right side: \[ \log y = \log x \cdot \log(\log x) \] ### Step 3: Differentiate both sides Now, we differentiate both sides with respect to \( x \). We will use implicit differentiation on the left side and the product rule on the right side: \[ \frac{d}{dx}(\log y) = \frac{d}{dx}(\log x \cdot \log(\log x)) \] Using the chain rule on the left side: \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}(\log x) \cdot \log(\log x) + \log x \cdot \frac{d}{dx}(\log(\log x)) \] ### Step 4: Differentiate the right side Now we differentiate each part: - The derivative of \( \log x \) is \( \frac{1}{x} \). - The derivative of \( \log(\log x) \) using the chain rule is \( \frac{1}{\log x} \cdot \frac{1}{x} = \frac{1}{x \log x} \). Putting it all together, we have: \[ \frac{1}{y} \frac{dy}{dx} = \frac{1}{x} \log(\log x) + \log x \cdot \frac{1}{x \log x} \] The second term simplifies to: \[ \frac{1}{x} \] ### Step 5: Combine the terms Thus, we can combine the terms: \[ \frac{1}{y} \frac{dy}{dx} = \frac{1}{x} \log(\log x) + \frac{1}{x} \] Factoring out \( \frac{1}{x} \): \[ \frac{1}{y} \frac{dy}{dx} = \frac{1}{x} (1 + \log(\log x)) \] ### Step 6: Solve for \( \frac{dy}{dx} \) Now, we multiply both sides by \( y \): \[ \frac{dy}{dx} = y \cdot \frac{1}{x} (1 + \log(\log x)) \] ### Step 7: Substitute back for \( y \) Since \( y = (\log x)^{\log x} \), we substitute back: \[ \frac{dy}{dx} = (\log x)^{\log x} \cdot \frac{1}{x} (1 + \log(\log x)) \] ### Final Answer Thus, the final result is: \[ \frac{dy}{dx} = \frac{(\log x)^{\log x}}{x} (1 + \log(\log x)) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=(log x)^(x) then (dy)/(dx) =

If y= (sin x)^(logx ),then (dy)/(dx)=

Knowledge Check

  • If y=x^(logx) ,then (dy)/(dx)=

    A
    ` 2x ^((logx-1)) logx `
    B
    ` x^((logx-1))`
    C
    ` (2)/( xlogx )`
    D
    ` x^((logx-1))logx `
  • If y= ( log sin x) (logx ) ,then (dy)/(dx)

    A
    ` (log (sin x))/( x) +(log x )(cotx) `
    B
    ` (log (sin x))/( x) -(log x )(cotx) `
    C
    ` (log (sin x))/( x)+(log x )(tan x) `
    D
    ` (log (sin x))/( x)-(log x )(tan x) `
  • If y=log (log ( log x)) ,then (dy)/(dx)

    A
    ` (1)/( xlog ( logx) ) `
    B
    ` (logx )/( xlog ( logx) ) `
    C
    ` (1 )/( x(logx) log ( logx) ) `
    D
    ` (1 )/( (logx) log ( logx) ) `
  • Similar Questions

    Explore conceptually related problems

    If y=log x^(x), then (dy)/(dx)=

    If y=5^(log x) then (dy)/(dx)=

    If y= e^(log (log x )) ,then (dy)/(dx) =

    If , y=(logx )^(sin x ) ,then (dy)/(dx) =

    If y = e^(log x ) , then ( dy)/(dx)