Home
Class 12
MATHS
If e^(x) +e^(y) =e^(x+y),then (dy)/(dx)...

If ` e^(x) +e^(y) =e^(x+y),then (dy)/(dx)=`

A

` e^(x-y) ((1-e^(y))/( 1-e^(x)) ) `

B

` -e^(x-y) ((1-e^(y))/( 1-e^(x)) ) `

C

` e^(y-x) ((1-e^(y))/( 1-e^(x)) ) `

D

`- e^(y-x) ((1-e^(y))/( 1-e^(x)) ) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( e^x + e^y = e^{x+y} \) and find \( \frac{dy}{dx} \), we will differentiate both sides of the equation with respect to \( x \). ### Step-by-Step Solution: 1. **Differentiate both sides with respect to \( x \)**: \[ \frac{d}{dx}(e^x + e^y) = \frac{d}{dx}(e^{x+y}) \] 2. **Apply the differentiation rules**: - The derivative of \( e^x \) with respect to \( x \) is \( e^x \). - For \( e^y \), we use the chain rule, giving us \( e^y \cdot \frac{dy}{dx} \). - The derivative of \( e^{x+y} \) also requires the chain rule, resulting in \( e^{x+y} \cdot (1 + \frac{dy}{dx}) \). Thus, we have: \[ e^x + e^y \cdot \frac{dy}{dx} = e^{x+y} \cdot (1 + \frac{dy}{dx}) \] 3. **Rearrange the equation**: \[ e^x + e^y \cdot \frac{dy}{dx} = e^{x+y} + e^{x+y} \cdot \frac{dy}{dx} \] 4. **Collect all terms involving \( \frac{dy}{dx} \) on one side**: \[ e^y \cdot \frac{dy}{dx} - e^{x+y} \cdot \frac{dy}{dx} = e^{x+y} - e^x \] 5. **Factor out \( \frac{dy}{dx} \)**: \[ \left( e^y - e^{x+y} \right) \cdot \frac{dy}{dx} = e^{x+y} - e^x \] 6. **Solve for \( \frac{dy}{dx} \)**: \[ \frac{dy}{dx} = \frac{e^{x+y} - e^x}{e^y - e^{x+y}} \] 7. **Simplify the expression**: Notice that \( e^{x+y} = e^x \cdot e^y \), thus: \[ \frac{dy}{dx} = \frac{e^x(e^y - 1)}{e^y - e^x e^y} \] \[ = \frac{e^x(e^y - 1)}{e^y(1 - e^x)} \] 8. **Final form**: We can express this as: \[ \frac{dy}{dx} = -\frac{e^y}{e^x} \] ### Final Answer: \[ \frac{dy}{dx} = -\frac{e^y}{e^x} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If x^y = e^(x-y) then (dy)/(dx) =

If y=e^(x)+x then (dy)/(dx)=

Knowledge Check

  • If e^(2x) +e^(2y) =e^(2( x+y)),then (dy)/(dx)=

    A
    ` e^(2(x+y) )((1-e^(2y))/( 1-e^(2x)))`
    B
    ` -e^(2(x+y) )((1-e^(2y))/( 1-e^(2x)))`
    C
    ` e^(2(x-y) )((1-e^(2y))/( 1-e^(2x)))`
    D
    ` -e^(2(x-y) )((1-e^(2y))/( 1-e^(2x)))`
  • If y= e^(x^(5) e^(x) ) ,then (dy)/(dx) =

    A
    ` (5x^(4) +1) e^(x^(5) +x) `
    B
    ` (5x^(4)- 1) e^(x^(5) + x) `
    C
    ` (5x^(4) +x) e^(x^(5)+x)`
    D
    ` (5x^(4) -x) e^(x^(5)+x) `
  • Similar Questions

    Explore conceptually related problems

    If x^(y)=e^(x-y); then (dy)/(dx) is

    If e^(x)+e^(y)=x+y, then (dy)/(dx)=

    if y^(x)=e^(y-x) then (dy)/(dx)

    If y =( e^(x) + 1)/( e^(x)) ,then (dy)/(dx) =

    If y= x^(e^(x)) ,then (dy)/(dx) =

    If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0