Home
Class 12
MATHS
If x^(y) =3^(x-y),then (dy)/(dx)=...

If ` x^(y) =3^(x-y),then (dy)/(dx)=`

A

` (xlog 3-y)/( xlog (3x))`

B

` (y-xlog 3)/( xlog (3x))`

C

` (xlog 3-y)/( xlog (3+x))`

D

` (y-xlog 3)/( xlog (3+x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( x^y = 3^{x-y} \) and find \( \frac{dy}{dx} \), we will differentiate both sides of the equation with respect to \( x \). Here’s the step-by-step solution: ### Step 1: Differentiate both sides We start with the equation: \[ x^y = 3^{x-y} \] Now, we will differentiate both sides with respect to \( x \). ### Step 2: Differentiate the left side \( x^y \) To differentiate \( x^y \), we use logarithmic differentiation. Let \( z = x^y \). Taking the natural logarithm of both sides: \[ \ln z = y \ln x \] Differentiating both sides with respect to \( x \): \[ \frac{1}{z} \frac{dz}{dx} = \frac{dy}{dx} \ln x + y \frac{1}{x} \] Multiplying through by \( z \) (which is \( x^y \)): \[ \frac{dz}{dx} = x^y \left( \frac{dy}{dx} \ln x + \frac{y}{x} \right) \] ### Step 3: Differentiate the right side \( 3^{x-y} \) Now, differentiate \( 3^{x-y} \): \[ \frac{d}{dx}(3^{x-y}) = 3^{x-y} \ln 3 \left(1 - \frac{dy}{dx}\right) \] ### Step 4: Set the derivatives equal Now we set the derivatives from both sides equal to each other: \[ x^y \left( \frac{dy}{dx} \ln x + \frac{y}{x} \right) = 3^{x-y} \ln 3 \left( 1 - \frac{dy}{dx} \right) \] ### Step 5: Expand and rearrange Expanding both sides gives: \[ x^y \frac{dy}{dx} \ln x + y x^{y-1} = 3^{x-y} \ln 3 - 3^{x-y} \ln 3 \frac{dy}{dx} \] Now, we will collect all the \( \frac{dy}{dx} \) terms on one side: \[ x^y \frac{dy}{dx} \ln x + 3^{x-y} \ln 3 \frac{dy}{dx} = 3^{x-y} \ln 3 - y x^{y-1} \] ### Step 6: Factor out \( \frac{dy}{dx} \) Factoring out \( \frac{dy}{dx} \): \[ \frac{dy}{dx} \left( x^y \ln x + 3^{x-y} \ln 3 \right) = 3^{x-y} \ln 3 - y x^{y-1} \] ### Step 7: Solve for \( \frac{dy}{dx} \) Finally, we solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{3^{x-y} \ln 3 - y x^{y-1}}{x^y \ln x + 3^{x-y} \ln 3} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{3^{x-y} \ln 3 - y x^{y-1}}{x^y \ln x + 3^{x-y} \ln 3} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If x^(y) = 2^(x-y) , then (dy)/(dx) =?

If x^(y)=e^(x-y); then (dy)/(dx) is

Knowledge Check

  • If x^(y) = y^(x) " then " (dy)/(dx)= ?

    A
    `((y - x log y))/((x - y log x))`
    B
    `(y(y -x log y))/(x(x - y logx))`
    C
    `(y(y + x log y))/(x(x + y logx))`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    "If "x^(y)=e^(x-y)" then "(dy)/(dx)=

    If x^y = e^(x-y) then (dy)/(dx) =

    If x^(y)=y^(x), then find(dy)/(dx)

    If x^(y)=y^(x), then find (dy)/(dx)

    If y=x^(3), then (dy)/(dx)=

    If x^(y)=y^(x), find (dy)/(dx)

    x^(y)=y^(x) then find (dy)/(dx)