Home
Class 12
MATHS
If x=cos ^(-1) (4t^(3) -3t) ,y =tan ^(-...

If ` x=cos ^(-1) (4t^(3) -3t) ,y =tan ^(-1)((sqrt( 1-t^(2)))/( t)),then (dy)/(dx)=`

A

` (1)/(3) `

B

` (-1)/(3)`

C

` 3`

D

`-3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \(\frac{dy}{dx}\) given the parametric equations: 1. \( x = \cos^{-1}(4t^3 - 3t) \) 2. \( y = \tan^{-1}\left(\frac{\sqrt{1 - t^2}}{t}\right) \) ### Step 1: Differentiate \(x\) with respect to \(t\) To differentiate \(x\), we will use the chain rule. First, we need to differentiate the inverse cosine function: \[ \frac{dx}{dt} = -\frac{1}{\sqrt{1 - (4t^3 - 3t)^2}} \cdot \frac{d}{dt}(4t^3 - 3t) \] Now, we differentiate \(4t^3 - 3t\): \[ \frac{d}{dt}(4t^3 - 3t) = 12t^2 - 3 \] Thus, we have: \[ \frac{dx}{dt} = -\frac{12t^2 - 3}{\sqrt{1 - (4t^3 - 3t)^2}} \] ### Step 2: Differentiate \(y\) with respect to \(t\) Now we differentiate \(y\): \[ \frac{dy}{dt} = \frac{1}{1 + \left(\frac{\sqrt{1 - t^2}}{t}\right)^2} \cdot \frac{d}{dt}\left(\frac{\sqrt{1 - t^2}}{t}\right) \] First, we simplify \(\left(\frac{\sqrt{1 - t^2}}{t}\right)^2\): \[ \left(\frac{\sqrt{1 - t^2}}{t}\right)^2 = \frac{1 - t^2}{t^2} \] Thus, we have: \[ 1 + \left(\frac{\sqrt{1 - t^2}}{t}\right)^2 = \frac{1}{t^2} \] Now, we differentiate \(\frac{\sqrt{1 - t^2}}{t}\) using the quotient rule: \[ \frac{d}{dt}\left(\frac{\sqrt{1 - t^2}}{t}\right) = \frac{t \cdot \frac{-t}{\sqrt{1 - t^2}} - \sqrt{1 - t^2}}{t^2} \] This simplifies to: \[ \frac{-t^2 - (1 - t^2)}{t^2 \sqrt{1 - t^2}} = \frac{-1}{t^2 \sqrt{1 - t^2}} \] Thus, we have: \[ \frac{dy}{dt} = \frac{1}{1 + \frac{1 - t^2}{t^2}} \cdot \frac{-1}{t^2 \sqrt{1 - t^2}} = \frac{t^2}{1}{\cdot} \frac{-1}{t^2 \sqrt{1 - t^2}} = \frac{-1}{\sqrt{1 - t^2}} \] ### Step 3: Find \(\frac{dy}{dx}\) Now we can find \(\frac{dy}{dx}\) using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{-\frac{1}{\sqrt{1 - t^2}}}{-\frac{12t^2 - 3}{\sqrt{1 - (4t^3 - 3t)^2}}} \] This simplifies to: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - t^2}} \cdot \frac{\sqrt{1 - (4t^3 - 3t)^2}}{12t^2 - 3} \] ### Step 4: Evaluate the expression Now, we need to evaluate this expression to find the final result. After simplification, we find: \[ \frac{dy}{dx} = \frac{1}{3} \] ### Final Answer Thus, the value of \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{1}{3} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If x=sin^(-1)(3t-4t^(3)) and y=cos^(-1)sqrt(1-t^(2)) then (dy)/(dx)=

If x=(t+(1)/(t)),y=(t-(1)/(t)) , then (dy)/(dx)=?

Knowledge Check

  • If x= sin^(-1)(3t-4t^(3)) and y=cos^(-1)(sqrt(1-t^(2))) , then (dy)/(dx) is equal to

    A
    `1/2`
    B
    `2/5`
    C
    `3/2`
    D
    `1/3`
  • If x=(t+1)/(t),y=(t-1)/(t)," then "(dy)/(dx)=

    A
    1
    B
    0
    C
    2
    D
    `-1`
  • If x=sin^(-1)(3t-4t^8) and y=cos^(-1)(sqrt(1-t^2)) , then dy/dx is equal to

    A
    `1//2`
    B
    `2//5`
    C
    `3//2`
    D
    `1//3`
  • Similar Questions

    Explore conceptually related problems

    If =sin^(-1)(3t-4t^(3)),y=cos^(-1)(8t^(4)-8t^(2)+1) then (dy)/(dx)=

    If x=sin^(-1)((2t)/(1+t^(2)))andy=tan^(-1)((2t)/(1-t^(2))), then prove that (dy)/(dx)=1 .

    If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

    If x=a(t+t^(-1)),y=a(t-t^(-1))," then "(dy)/(dx)=

    If x = cos ^(-1) (t) , y = sqrt(1-t^(2)) then (dy)/(dx) = _____________