Home
Class 12
MATHS
int(sin^(6)theta+cos^(6)theta)/(sin^(2)t...

`int(sin^(6)theta+cos^(6)theta)/(sin^(2)theta cos^(2)theta)d theta=`

A

`tan theta+cot theta+3theta+c`

B

`tan theta-cot theta-3theta+c`

C

`tan theta+cot theta-3theta+c`

D

`tan theta-cot theta+3theta+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\sin^6 \theta + \cos^6 \theta}{\sin^2 \theta \cos^2 \theta} \, d\theta, \] we can start by simplifying the expression in the integrand. ### Step 1: Rewrite \(\sin^6 \theta + \cos^6 \theta\) Using the identity for the sum of cubes, we can express \(\sin^6 \theta + \cos^6 \theta\) as follows: \[ \sin^6 \theta + \cos^6 \theta = (\sin^2 \theta + \cos^2 \theta)(\sin^4 \theta - \sin^2 \theta \cos^2 \theta + \cos^4 \theta). \] Since \(\sin^2 \theta + \cos^2 \theta = 1\), we have: \[ \sin^6 \theta + \cos^6 \theta = \sin^4 \theta - \sin^2 \theta \cos^2 \theta + \cos^4 \theta. \] ### Step 2: Express \(\sin^4 \theta + \cos^4 \theta\) Next, we can use the identity: \[ \sin^4 \theta + \cos^4 \theta = (\sin^2 \theta + \cos^2 \theta)^2 - 2\sin^2 \theta \cos^2 \theta = 1 - 2\sin^2 \theta \cos^2 \theta. \] Substituting this back, we get: \[ \sin^6 \theta + \cos^6 \theta = (1 - 2\sin^2 \theta \cos^2 \theta) - \sin^2 \theta \cos^2 \theta = 1 - 3\sin^2 \theta \cos^2 \theta. \] ### Step 3: Substitute back into the integral Now substituting this into our integral \(I\): \[ I = \int \frac{1 - 3\sin^2 \theta \cos^2 \theta}{\sin^2 \theta \cos^2 \theta} \, d\theta. \] This can be separated into two integrals: \[ I = \int \frac{1}{\sin^2 \theta \cos^2 \theta} \, d\theta - 3 \int d\theta. \] ### Step 4: Simplify the first integral The first integral can be rewritten using the identity: \[ \frac{1}{\sin^2 \theta \cos^2 \theta} = \frac{1}{\sin^2 \theta} \cdot \frac{1}{\cos^2 \theta} = \csc^2 \theta \sec^2 \theta. \] Thus, \[ \int \csc^2 \theta \sec^2 \theta \, d\theta. \] ### Step 5: Solve the integrals The integral of \(\csc^2 \theta\) is \(-\cot \theta\) and the integral of \(\sec^2 \theta\) is \(\tan \theta\). Therefore, we can write: \[ I = \int \csc^2 \theta \sec^2 \theta \, d\theta - 3\theta + C. \] ### Step 6: Final expression Thus, the final expression for the integral is: \[ I = -\cot \theta \tan \theta - 3\theta + C. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1

int(2sin theta cos theta)/(sin^(4)theta+cos^(4)theta)d theta

Knowledge Check

  • The value of 2(sin^(6) theta + cos^(6) theta) - 3 (sin^(4) theta + cos^(4) theta) + 1 is

    A
    1
    B
    0
    C
    5
    D
    3
  • The value of sin^(8)theta+cos^(8)theta+sin^(6)theta cos^(2)theta+3sin^(4)theta cos^(2)theta+cos^(6)theta sin^(2)theta+3sin^(2)thetacos^(4)theta is equal to

    A
    `cos^(2)2 theta`
    B
    `sin^(2)2theta`
    C
    `cos^(3)2 theta+sin^(3)2theta`
    D
    none of these
  • 4(sin^(6)theta+cos^(6)theta)-6(sin^(4)theta+cos^(4)theta) is equal to

    A
    `0`
    B
    `1`
    C
    `-2`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    The value of the expression sin^(6)theta+cos^(6)theta+3sin^(2)theta*cos^(2)theta equals

    What is ( sin ^(6) theta - cos ^(6) theta )/( sin ^(2) theta - cos ^(2) theta) equal to ?

    Prove that: sin^(6) theta + cos^(6) theta =1 - 3 sin^(2) theta cos^(2) theta

    Prove that sin^(6)theta+cos^(6)theta=1-3sin^(2)theta cos^(2)theta

    The value of 8(sin^(6)theta+cos^(6)theta)-12(sin^(4)theta+cos^(4)theta) is equal to