Home
Class 12
MATHS
int (sin 2x)/(1+sin^2x)dx=...

`int (sin 2x)/(1+sin^2x)dx=`

A

`log|sin 2x|+c`

B

`log|1+sin^2x|+c`

C

`(1)/(2)log|1+sin^2 x|+c`

D

` tan^(-1) (sin x)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sin 2x}{1 + \sin^2 x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We know that \( \sin 2x = 2 \sin x \cos x \). Therefore, we can rewrite the integral as: \[ I = \int \frac{2 \sin x \cos x}{1 + \sin^2 x} \, dx \] ### Step 2: Use substitution Let \( t = 1 + \sin^2 x \). Then, we need to find \( dt \): \[ dt = 2 \sin x \cos x \, dx \] This means: \[ dx = \frac{dt}{2 \sin x \cos x} \] ### Step 3: Substitute into the integral Now substituting \( t \) into the integral: \[ I = \int \frac{2 \sin x \cos x}{t} \cdot \frac{dt}{2 \sin x \cos x} \] The \( 2 \sin x \cos x \) cancels out: \[ I = \int \frac{1}{t} \, dt \] ### Step 4: Integrate The integral \( \int \frac{1}{t} \, dt \) is: \[ I = \ln |t| + C \] ### Step 5: Substitute back for \( t \) Now, substituting back for \( t \): \[ I = \ln |1 + \sin^2 x| + C \] ### Final Answer Thus, the final answer is: \[ I = \ln |1 + \sin^2 x| + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(sin x)/(1-sin^(2)x)dx

int(sin x)/(1-sin^(2)x)dx

Knowledge Check

  • int(sin2x)/(1+sin^(2)x)dx=

    A
    `log(sin2x)+c`
    B
    `log(1+sin^(2)x)+c`
    C
    `1/2log(1+sin^(2)x)+c`
    D
    `tan^(-1)(sinx)+c`
  • int(sin4x)/(1+sin^(4)2x)dx=

    A
    `-(1)/(2)tan^(-1)(sin^(2)2x)+c`
    B
    `(1)/(2)tan^(-1)(sin^(2)2x)+c`
    C
    `tan^(-1)(sin^(2)2x)+c`
    D
    `cot^(-1)(sin^(2)2x)+c`
  • Similar Questions

    Explore conceptually related problems

    int (sin 2x)/(1+cos^2x)dx=

    int(sin2x )/(1+sin^(2)x)dx

    int (sin 2x)/(sin 4x) dx

    " 4.(i) "int(sin x)/(1-sin^(2)x)dx

    int (sin2x) dx/(1+sin^4x)

    I= int ( sin 2 x)/( 1+ sin^(2) x) dx .