Home
Class 12
MATHS
int(sin3x)/(cosx)dx=...

`int(sin3x)/(cosx)dx=`

A

`log|cosx|+2cos^2x+c`

B

`log|secx|+2cos^2x+c`

C

`log|cosx|-2cos^2x+c`

D

`log|secx|-2cos^2x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sin 3x}{\cos x} \, dx \), we can follow these steps: ### Step 1: Rewrite \(\sin 3x\) We can use the trigonometric identity for \(\sin 3x\): \[ \sin 3x = 3 \sin x - 4 \sin^3 x \] Thus, we can rewrite the integral as: \[ I = \int \frac{3 \sin x - 4 \sin^3 x}{\cos x} \, dx \] ### Step 2: Separate the Integral We can separate the integral into two parts: \[ I = \int \frac{3 \sin x}{\cos x} \, dx - 4 \int \frac{\sin^3 x}{\cos x} \, dx \] This can be simplified to: \[ I = 3 \int \tan x \, dx - 4 \int \frac{\sin^3 x}{\cos x} \, dx \] ### Step 3: Integrate the First Part The integral of \(\tan x\) is: \[ \int \tan x \, dx = -\log |\cos x| + C \] Thus, we have: \[ 3 \int \tan x \, dx = -3 \log |\cos x| \] ### Step 4: Simplify the Second Integral Now we need to simplify the second integral: \[ \int \frac{\sin^3 x}{\cos x} \, dx \] We can rewrite \(\sin^3 x\) as \(\sin x (1 - \cos^2 x)\): \[ \int \frac{\sin^3 x}{\cos x} \, dx = \int \frac{\sin x (1 - \cos^2 x)}{\cos x} \, dx = \int \frac{\sin x}{\cos x} \, dx - \int \frac{\sin x \cos^2 x}{\cos x} \, dx \] This gives us: \[ \int \tan x \, dx - \int \cos x \, dx \] ### Step 5: Change of Variables For the integral \(\int \sin x \, dx\), we can use the substitution \(t = \cos x\), which gives \(dt = -\sin x \, dx\). Thus: \[ \int \sin x \, dx = -\int dt = -t + C = -\cos x + C \] ### Step 6: Combine the Results Now we can combine everything: \[ I = -3 \log |\cos x| - 4 \left( \int \tan x \, dx - \left(-\cos x\right) \right) \] This gives us: \[ I = -3 \log |\cos x| - 4 \left( -\log |\cos x| + \cos x \right) \] Simplifying this: \[ I = -3 \log |\cos x| + 4 \log |\cos x| - 4 \cos x \] Thus: \[ I = \log |\cos x| - 4 \cos x + C \] ### Final Answer The final result is: \[ I = \log |\cos x| - 4 \cos x + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(sin x+cosx)^2dx

int(sin x)/(1+cosx)^2dx

Knowledge Check

  • If I=int(sin2x)/((3+4cosx)^(3))dx , then I=

    A
    `(3cosx+8)/((3+4cosx)^(2))+C`
    B
    `(3+8cosx)/(16(3+4cosx)^(2))+C`
    C
    `(3+cosx)/((3+4cosx)^(2))+C`
    D
    `(3-8 cosx)/(16(3+4cosx)^(2))+C`
  • int(sinx)/(sin(x-a))dx-int(cosx)/(cos(x-a))dx=

    A
    `2sina log(tanx)+c`
    B
    `2sinalog[tan(x-a)]+c`
    C
    `2log[tan(x-a)]+c`
    D
    `2cosa log[sec(x-a)]+c`
  • int(sin^(2)x)/(1+cosx)dx=

    A
    `sinx+C`
    B
    `x+sinx+C`
    C
    `cosx+C`
    D
    `x-sinx+C`
  • Similar Questions

    Explore conceptually related problems

    int (sin x)/((1+cosx))dx.

    Evaluate: int(sin^(3)x/2)/(cosx/2sqrt(cos^(3)x+cos^(2)x+cosx)) dx

    Evaluate : int (sin^2x)/(1+cosx) dx.

    int(cosx+sinx)/(sin x-cos x)dx=

    int(cos^(2)x)/(1+sinx)dx+int(sin^(2)x)/(1-cosx)dx=