Home
Class 12
MATHS
Evaluate int e^(x) cos^(2) x dx...

Evaluate `int e^(x) cos^(2) x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int e^x \cos^2 x \, dx \), we will follow these steps: ### Step 1: Rewrite the integral Let \( I = \int e^x \cos^2 x \, dx \). Using the identity \( \cos^2 x = \frac{1 + \cos 2x}{2} \), we can rewrite the integral as: \[ I = \int e^x \left( \frac{1 + \cos 2x}{2} \right) \, dx = \frac{1}{2} \int e^x \, dx + \frac{1}{2} \int e^x \cos 2x \, dx \] ### Step 2: Evaluate the first integral The first integral is straightforward: \[ \frac{1}{2} \int e^x \, dx = \frac{1}{2} e^x + C_1 \] ### Step 3: Set up the second integral Let \( I_1 = \int e^x \cos 2x \, dx \). We will need to use integration by parts for this integral. ### Step 4: Apply integration by parts Using integration by parts, let: - \( u = \cos 2x \) (thus \( du = -2 \sin 2x \, dx \)) - \( dv = e^x \, dx \) (thus \( v = e^x \)) Applying integration by parts: \[ I_1 = e^x \cos 2x - \int e^x (-2 \sin 2x) \, dx \] \[ I_1 = e^x \cos 2x + 2 \int e^x \sin 2x \, dx \] ### Step 5: Set up the new integral Let \( I_2 = \int e^x \sin 2x \, dx \). We will also apply integration by parts here: - \( u = \sin 2x \) (thus \( du = 2 \cos 2x \, dx \)) - \( dv = e^x \, dx \) (thus \( v = e^x \)) Applying integration by parts: \[ I_2 = e^x \sin 2x - \int e^x (2 \cos 2x) \, dx \] \[ I_2 = e^x \sin 2x - 2 I_1 \] ### Step 6: Substitute back Now we have two equations: 1. \( I_1 = e^x \cos 2x + 2 I_2 \) 2. \( I_2 = e^x \sin 2x - 2 I_1 \) Substituting \( I_2 \) into the equation for \( I_1 \): \[ I_1 = e^x \cos 2x + 2 \left( e^x \sin 2x - 2 I_1 \right) \] \[ I_1 = e^x \cos 2x + 2 e^x \sin 2x - 4 I_1 \] \[ 5 I_1 = e^x \cos 2x + 2 e^x \sin 2x \] \[ I_1 = \frac{1}{5} e^x \cos 2x + \frac{2}{5} e^x \sin 2x \] ### Step 7: Substitute \( I_1 \) back into \( I \) Now substitute \( I_1 \) back into the expression for \( I \): \[ I = \frac{1}{2} e^x + \frac{1}{2} I_1 \] \[ I = \frac{1}{2} e^x + \frac{1}{2} \left( \frac{1}{5} e^x \cos 2x + \frac{2}{5} e^x \sin 2x \right) \] \[ I = \frac{1}{2} e^x + \frac{1}{10} e^x \cos 2x + \frac{1}{5} e^x \sin 2x \] ### Step 8: Combine and simplify Combining terms: \[ I = \frac{5}{10} e^x + \frac{1}{10} e^x \cos 2x + \frac{2}{10} e^x \sin 2x \] \[ I = \frac{1}{10} e^x (5 + \cos 2x + 2 \sin 2x) + C \] ### Final Answer Thus, the final result is: \[ \int e^x \cos^2 x \, dx = \frac{1}{10} e^x (5 + \cos 2x + 2 \sin 2x) + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int e^(x) cos^(2) x (cos x-3 sin x ) dx

Evaluate int x e ^(x ^(2)) dx

int e^(x)cos e^(x)dx

Evaluate: int e^(2x)cos(3x+4)dx

Evaluate: int e^(x)(cos x-sin x)dx

Evaluate : int e^(x) [(cos x - sin x)/(sin^(2) x)] dx.

Evaluate int cos x*e^(x)*x^(2)dx

int e^(2x) sin x cos x dx

Evaluate int x^(2) cos x dx

Evaluate :int cos x*e^(x)*x^(2)dx