Home
Class 12
MATHS
Find the value of ((cosA+cosB)/(sinA-sin...

Find the value of `((cosA+cosB)/(sinA-sinB))^(n)+((sinA+sinB)/(cosA-cosB))^(n)` (where, n is an even)

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \[ \left(\frac{\cos A + \cos B}{\sin A - \sin B}\right)^n + \left(\frac{\sin A + \sin B}{\cos A - \cos B}\right)^n \] where \( n \) is an even integer, we can use trigonometric identities to simplify the expression. ### Step 1: Use Trigonometric Identities We start by applying the sum-to-product identities for cosine and sine: 1. **Cosine Addition Formula**: \[ \cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] 2. **Sine Subtraction Formula**: \[ \sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \] 3. **Sine Addition Formula**: \[ \sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] 4. **Cosine Subtraction Formula**: \[ \cos A - \cos B = -2 \sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \] ### Step 2: Substitute the Identities Now, we substitute these identities into the original expression: \[ \frac{\cos A + \cos B}{\sin A - \sin B} = \frac{2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)}{2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)} \] This simplifies to: \[ \frac{\cos\left(\frac{A-B}{2}\right)}{\sin\left(\frac{A-B}{2}\right)} = \cot\left(\frac{A-B}{2}\right) \] Similarly, for the second part: \[ \frac{\sin A + \sin B}{\cos A - \cos B} = \frac{2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)}{-2 \sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)} \] This simplifies to: \[ -\frac{\cos\left(\frac{A-B}{2}\right)}{\sin\left(\frac{A-B}{2}\right)} = -\cot\left(\frac{A-B}{2}\right) \] ### Step 3: Combine the Results Now, we can rewrite the original expression: \[ \left(\cot\left(\frac{A-B}{2}\right)\right)^n + \left(-\cot\left(\frac{A-B}{2}\right)\right)^n \] Since \( n \) is an even integer, we have: \[ (-\cot\left(\frac{A-B}{2}\right))^n = \cot^n\left(\frac{A-B}{2}\right) \] Thus, the expression simplifies to: \[ \cot^n\left(\frac{A-B}{2}\right) + \cot^n\left(\frac{A-B}{2}\right) = 2 \cot^n\left(\frac{A-B}{2}\right) \] ### Final Result Therefore, the value of the expression is: \[ \boxed{2 \cot^n\left(\frac{A-B}{2}\right)} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 8|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 9|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 6|8 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If n is an odd positive interger, then ((cosA+cosB)/(sinA-sinB))^(n)+((sinA+sinB)/(cosA-cosB))^(n)=

Prove that: (cosA-cosB)^(2)+(sinA-sinB)^(2)=4sin^(2)(A-B)/(2)

(sin^2A-sin^2B)/(sinA.cosA-sinB.cosB)=....

(sinA+sinB)/(cosA-cosB)+(cosA+cosB)/(sinA-sinB)=?

The value of (sin A+sinB)/(cos A+cos B)+(cos A-cosB)/(sinA-sinB) is……

If cosA+cosB=m and sinA+sinB=n then sin(A+B)=

Prove that: (cosA+cosB)^(2)+(sinA+sinB)^(2)=4cos^(2)(A-B)/2

Prove that: (1+cosA+sinA)/(1+cosA-sinA)=(1+sinA)/(cosA)

Prove that: tan(A+B)/(2) + tan(A-B)/(2) = (2sinA)/(cosA+cosB)

(1+sinA-cosA)/(1+sinA+cosA)=