Home
Class 12
MATHS
adj AB -(adj B)(adj A) =...

`adj AB -(adj B)(adj A) =`

A

`adj A-adj B`

B

1

C

0

D

non of these

Text Solution

Verified by Experts

The correct Answer is:
c
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    TARGET PUBLICATION|Exercise EVALUATION TEST|13 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise CRITICAL THINKING (2.3 Application of matrices)|5 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Binomial Distribution|1 Videos

Similar Questions

Explore conceptually related problems

Let A be a matrix of order 3 xx 3 andmatrices B, C and D are related suchthat B = adj (A), C = adj (adj A), D = (adj(adj (adj A))). If | adj( adj (adj (adjABCD))) is |A|^K, then k (A) is less than 256 (B) has 21 divisors (C) cannot say (D) is an odd number

If A is a square matrix such that A(adj A)=[(4,0,0),(0,4,0),(0,0,4)] , then (|adj (adj A)|)/(|adj A|) is equal to

Let A be a square matrix of order 3 such that adj. (adj. (adj. A)) =[(16,0,-24),(0,4,0),(0,12,4)] . Then find (i) |A| (ii) adj. A

If A and B are non-singular matrices of Q. 1 order 3times3 such that A=(adj B) and B=(adj A) then det(A)+det(B) is equal to

If A=[[1,0,-1],[3,4,5],[0,-6,-7]] , verify that A.(adj A) = (adj A). A= |A|.I.

If A is order 3 square matrix such that |A|=2 , then |"adj (adj (adj A))"| is

Let A be a 3 xx 3 matrix such that adj A = [{:(,2,-1,1),(,-1,0,2),(,1,-2,-1):}] and B =adj (adj A) . If |A| = lambda and |(B^(-1))^T| = mu then the ordered pair (|lambda|, mu) is equal to

A and B are two matrices of same order 3 xx 3 , where A=[{:(1,2,3),(2,3,4),(5,6,8):}],B=[{:(3,2,5),(2,3,8),(7,2,9):}] Value of |adj (adj adj( adj A)))| is

Find the adjoint of the given matrix and verify in each case that A.(adj A)=(adj A).A=|A\|.I. [(cos a,sin a),(sin a,cos a)]

Find the adjoint of the given matrix and verify in ach case that A.(adj A)=(adj A).A=|A\|.I. [(3,-5),(-1,2)]

TARGET PUBLICATION-MATRICES-COMPETITIVE THINKING (Inverse off a matrix )
  1. If the adjoint of a 3 3 matrix P is 1 4 4 2 1 7 1 1 3 , then the po...

    Text Solution

    |

  2. Let A be a 2xx2 matrix Statement -1 adj (adjA)=A Statement-2 abs(a...

    Text Solution

    |

  3. adj AB -(adj B)(adj A) =

    Text Solution

    |

  4. If A=[(2x,0),(x,x)] and A^(-1)=[(1,0),(-1,2)] then x equals to

    Text Solution

    |

  5. If A=[(x,-2),(3,7)] and A^(-1)=[(7/34,1/17),((-3)/34,2/17)],then the v...

    Text Solution

    |

  6. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  7. If A=[(5,4),(3,2)] then A^(-1) is equal to

    Text Solution

    |

  8. The inverse of matrix A=[[2, -3], [-4, 2]] is

    Text Solution

    |

  9. If U=[((1)/(sqrt2),(-1)/(sqrt2)),((1)/(sqrt2),(1)/(sqrt2))], then U^(-...

    Text Solution

    |

  10. If A=[{:(a, b), (c, d):}] " then " A^(-1) = .

    Text Solution

    |

  11. The invrse of the matrix [(2,0,0),(0,3,0),(0,0,4)] is

    Text Solution

    |

  12. If A=[((k)/(2),0,0),(0,(l)/(2),0),(0,0,(m)/(4))] and A^(-1)= [((1)/(2)...

    Text Solution

    |

  13. What is the inverse of A=[{:(0,0,1),(0,1,0),(1,0,0):}]?

    Text Solution

    |

  14. If A=[(1,-1,0),(1,0,0),(0,0,-1)], then A^(-1) is

    Text Solution

    |

  15. The inverse of the matrix [(1,0,0),(3,3,0),(5,2,-1)] is

    Text Solution

    |

  16. The inverse matrix of A=[(0,1,2),(1,2,3),(3,1,1)] is

    Text Solution

    |

  17. The inverse of the matrix [(1,0,0),(a,1,0),(b,c,1)] is (A) [(1,0,0),(-...

    Text Solution

    |

  18. If A=[(3,-3,4),(2,-3,4),(0,-1,1)], then A^(-1)=

    Text Solution

    |

  19. if A=[a(ij)](2*2) where a(ij)={i+j , i!=j and a(ij)=i^2-2j ,i=j then A...

    Text Solution

    |

  20. The element of second row and third column in the inverse of [[1, 2, 1...

    Text Solution

    |