Home
Class 12
MATHS
The value of int(0)^(-pi//4)(1+tanx)/(1-...

The value of `int_(0)^(-pi//4)(1+tanx)/(1-tanx)dx` is

A

`-1/2log2`

B

`1/4log2`

C

`1/3log2`

D

`(-1)/3log2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{-\frac{\pi}{4}} \frac{1 + \tan x}{1 - \tan x} \, dx, \] we can use a trigonometric identity to simplify the integrand. ### Step 1: Change of Variables First, we can change the limits of integration by reversing them, which introduces a negative sign: \[ I = -\int_{-\frac{\pi}{4}}^{0} \frac{1 + \tan x}{1 - \tan x} \, dx. \] ### Step 2: Use the Trigonometric Identity Using the identity \[ \tan\left(\frac{\pi}{4} + x\right) = \frac{1 + \tan x}{1 - \tan x}, \] we can rewrite the integral: \[ I = -\int_{-\frac{\pi}{4}}^{0} \tan\left(\frac{\pi}{4} + x\right) \, dx. \] ### Step 3: Substitute Next, we can substitute \( u = \frac{\pi}{4} + x \), which gives \( du = dx \). The limits change as follows: - When \( x = -\frac{\pi}{4} \), \( u = 0 \). - When \( x = 0 \), \( u = \frac{\pi}{4} \). Thus, the integral becomes: \[ I = -\int_{0}^{\frac{\pi}{4}} \tan u \, du. \] ### Step 4: Integrate The integral of \( \tan u \) is: \[ \int \tan u \, du = -\log|\cos u| + C. \] So we have: \[ I = -\left[-\log|\cos u|\right]_{0}^{\frac{\pi}{4}} = \log|\cos 0| - \log|\cos \frac{\pi}{4}|. \] ### Step 5: Evaluate the Limits Now we evaluate the limits: \[ I = \log(1) - \log\left(\frac{1}{\sqrt{2}}\right) = 0 - \left(-\frac{1}{2} \log 2\right) = \frac{1}{2} \log 2. \] ### Final Result Thus, the value of the integral is: \[ I = \frac{1}{2} \log 2. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(-pi//4)^0 (1+tanx)/(1-tanx) dx

int_(0)^(pi//2)(tanx)/((1+tanx))dx=?

Knowledge Check

  • int(1-tanx)/(1+tanx)dx=

    A
    `sec^(2)((pi)/(4)-x)+c`
    B
    `log(secx-sinx)+c`
    C
    `log(sinx+cosx)-k`
    D
    `log[sec((pi)/(4)-x)]+c`
  • Similar Questions

    Explore conceptually related problems

    int((1+tanx)/(1-tanx))dx

    Evaluate int_(0)^(pi//4)In(1+tanx)dx

    int_(0)^(pi//2)(1)/((1+tanx))dx=?

    int ((1+tanx)/(1-tanx))dx

    int(1-tanx)(1+tanx)dx

    int_0^(pi//2)log(tanx)dx

    int_(0)^(pi//2)(dx)/(1+tanx) is