Home
Class 12
MATHS
int(0)^(pi//2)e^(x)sinx dx=...

`int_(0)^(pi//2)e^(x)sinx dx=`

A

`1/2(e^((pi)/2)-1)`

B

`1/2(e^((pi)/2)+1)`

C

`1/2(1-e^((pi)/2))`

D

`2(e^((pi)/2)+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} e^x \sin x \, dx \), we will use the method of integration by parts. ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = \sin x \) (which we will differentiate) - \( dv = e^x \, dx \) (which we will integrate) ### Step 2: Differentiate and Integrate Now we differentiate \( u \) and integrate \( dv \): - \( du = \cos x \, dx \) - \( v = e^x \) ### Step 3: Apply Integration by Parts Formula Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] we substitute: \[ I = \left[ e^x \sin x \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} e^x \cos x \, dx \] ### Step 4: Evaluate the Boundary Terms Now evaluate the boundary terms: \[ \left[ e^x \sin x \right]_{0}^{\frac{\pi}{2}} = e^{\frac{\pi}{2}} \sin\left(\frac{\pi}{2}\right) - e^{0} \sin(0) = e^{\frac{\pi}{2}} \cdot 1 - 1 \cdot 0 = e^{\frac{\pi}{2}} \] So we have: \[ I = e^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} e^x \cos x \, dx \] ### Step 5: Define the New Integral Let \( J = \int_{0}^{\frac{\pi}{2}} e^x \cos x \, dx \). Then we can express \( I \) in terms of \( J \): \[ I = e^{\frac{\pi}{2}} - J \] ### Step 6: Apply Integration by Parts Again Now we need to evaluate \( J \) using integration by parts again. Let: - \( u = \cos x \) - \( dv = e^x \, dx \) Then: - \( du = -\sin x \, dx \) - \( v = e^x \) Applying integration by parts: \[ J = \left[ e^x \cos x \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} e^x (-\sin x) \, dx \] \[ J = \left[ e^x \cos x \right]_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} e^x \sin x \, dx \] ### Step 7: Evaluate the Boundary Terms for \( J \) Evaluate the boundary terms: \[ \left[ e^x \cos x \right]_{0}^{\frac{\pi}{2}} = e^{\frac{\pi}{2}} \cos\left(\frac{\pi}{2}\right) - e^{0} \cos(0) = e^{\frac{\pi}{2}} \cdot 0 - 1 \cdot 1 = -1 \] Thus, \[ J = -1 + I \] ### Step 8: Substitute \( J \) Back into the Equation for \( I \) Now substitute \( J \) back into the equation for \( I \): \[ I = e^{\frac{\pi}{2}} - (-1 + I) \] \[ I = e^{\frac{\pi}{2}} + 1 - I \] \[ 2I = e^{\frac{\pi}{2}} + 1 \] \[ I = \frac{e^{\frac{\pi}{2}} + 1}{2} \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} e^x \sin x \, dx = \frac{e^{\frac{\pi}{2}} + 1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi) e^(x) sin 2 x dx=

int_(0)^(pi//2)e^(x)((1+sinx)/(1+cosx))dx=?

int_(0)^(pi//2) e^x(sinx+cosx) dx

The greater of int_(0)^(pi//2)(sinx)/x dx and pi/2 is

int_(0)^(pi//2) (sinx )/(sin x + cos x ) dx=

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

Evaluate int_(0)^(pi//2)(x)/((sinx+cosx))dx .

Prove that: int_(0)^(pi//2) (sinx)/(sinx +cos x)d dx =(pi)/(4)

Consider is int_(0)^(pi//2) ln (sinx)dx equal to ? What is int_(0)^(pi//2)ln (sinx) dx equal to ?