Home
Class 12
MATHS
The greatest value of n for which the de...

The greatest value of n for which the determinant
`Delta = |(1,1,1),(.^(n)C_(1),.^(n+3)C_(1),.^(n+6)C_(1)),(.^(n)C_(2),.^(n+3)C_(2),.^(n+6)C_(2))|` is divisible by `3^(n)`, is

Text Solution

Verified by Experts

The correct Answer is:
3
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|23 Videos
  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

The value of |111^(n)C_(1)^(n+2)C_(1)^(n+4)C_(1)^(n)C_(2)^(n+2)C_(2)^(n+4)C_(2)| is

If 3^n is a factor of the determinant |{:(1,1,1),(.^nC_1,.^(n+3)C_1,.^(n+6)C_1),(.^nC_2, .^(n+3)C_2, .^(n+6)C_2):}| then the maximum value of n is ……..

Knowledge Check

  • The value of (.^(n)C_(0))/(n)+(.^(n)C_(1))/(n+1)+(.^(n)C_(2))/(n+2)+"..."+(.^(n)C_(2))/(2n)

    A
    `underset(0)overset(1)intx^(n-1)(1-x)^(n)dx`
    B
    `underset(1)overset(2)intx^(n)(x-1)^(n-1)dx`
    C
    `underset(1)overset(2)int(1+x)^(n)dx`
    D
    `underset(0)overset(1)int(1-x)^(n)x^(n-1)dx`
  • The value of (n+2).^(n)C_(0).2^(n+1)-(n+1).^(n)C_(1).2^(n)+(n).^(n)C_(2).2^(n-1)-….." to " (n+1) terms is equal to

    A
    4
    B
    4n
    C
    `4(n+1)`
    D
    `2(n+2)`
  • If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

    A
    `7`
    B
    `8`
    C
    `9`
    D
    `11`
  • Similar Questions

    Explore conceptually related problems

    1+^(n)C_(1)+^(n+1)C_(2)+^(n+2)C_(3)+......+^(n+r-1)C_(r)

    1+^(n)C_(1)+^(n+1)C_(2)+^(n+2)C_(3)+......+^(n+r-1)C_(r)

    Evaluate .^(n)C_(0).^(n)C_(2)+2.^(n)C_(1).^(n)C_(3)+3.^(n)C_(2).^(n)C_(4)+"...."+(n-1).^(n)C_(n-2).^(n)C_(n) .

    Find .^(n)C_(1)-(1)/(2).^(n)C_(2)+(1)/(3).^(n)C_(3)- . . . +(-1)^(n-1)(1)/(n).^(n)C_(n)

    (n+2)C_(0)(2^(n+1))-(n+1)C_(1)(2^(n))+(n)C_(2)(2^(n-1))- is equal to