Home
Class 12
MATHS
Prove that:cos^(-1)(4/5)+cos^(-1)(12/13)...

Prove that:`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`

Text Solution

AI Generated Solution

To prove that \( \cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right) \), we can use the formula for the sum of two inverse cosines: \[ \cos^{-1}(x) + \cos^{-1}(y) = \cos^{-1}(xy - \sqrt{(1-x^2)(1-y^2)}) \] ### Step 1: Identify \( x \) and \( y \) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 2.2|21 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.4|25 Videos
  • LINEAR PROGRAMMING

    NCERT|Exercise SOLVED EXAMPLES|11 Videos

Similar Questions

Explore conceptually related problems

Prove that cos^(-1)(3/5) + cos^(-1) (12/13) + cos^(-1)( 63/65) =pi/2 .

Prove that cos^(-1)((3)/(5))+cos^(-1)((12)/(13))+cos^(-1)((63)/(65))=(pi)/(2)

Prove that : cos^(-1).(3)/(5)+ cos^(-1).(12)/(13) = sin^(-1)((12)/(5))

Prove that: sin^(-1)((3)/(5))+cos^(-1)((12)/(13))=sin^(-1)((56)/(65))

Prove that sin^(-1)(5/13)+sin^(-1)(16/65)=cos^(-1)(4/5)

Prove that 2sin^(-1)((3)/(5))-cos^(-1)((5)/(13))=cos^(-1)((323)/(325))

Prove that: sin^-1 (3/5) +cos^-1 (12/13)+cot^-1 (56/33)=pi/2

Prove that : "tan"^(-1)3/4+"sin"^(-1)5/13="cos"^(-1)33/65

Prove that sin^(-1). 3/5 +cos^(-1) . 12/13 = sin^(-1). 56/65

tan^(-1)(1/3)+tan^(-1)(1/5)=(1)/(2)cos^(-1)(33/65)