Home
Class 12
MATHS
(sinx+cosx)/(sinx-cos x)-(sec^(2)x+2)/(t...

`(sinx+cosx)/(sinx-cos x)-(sec^(2)x+2)/(tan^(2)x-1)=`, where `x in (0, (pi)/(2))`

A

`(1)/(tan x+1)`

B

`(2)/(1+tanx)`

C

`(2)/(1+cot x)`

D

`(2)/(1-tan x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\sin x + \cos x}{\sin x - \cos x} - \frac{\sec^2 x + 2}{\tan^2 x - 1}\), we can follow these steps: ### Step 1: Simplify the first term The first term is \(\frac{\sin x + \cos x}{\sin x - \cos x}\). We can rewrite this using the identities for sine and cosine. **Hint:** Remember that \(\sin x + \cos x\) can be expressed in terms of a single sine function using the angle addition formula. ### Step 2: Rewrite using trigonometric identities Using the identity \(\sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right)\) and \(\sin x - \cos x = \sqrt{2} \sin\left(x - \frac{\pi}{4}\right)\), we can rewrite the first term as: \[ \frac{\sqrt{2} \sin\left(x + \frac{\pi}{4}\right)}{\sqrt{2} \sin\left(x - \frac{\pi}{4}\right)} = \frac{\sin\left(x + \frac{\pi}{4}\right)}{\sin\left(x - \frac{\pi}{4}\right)} \] ### Step 3: Simplify the second term The second term is \(\frac{\sec^2 x + 2}{\tan^2 x - 1}\). We can use the identity \(\sec^2 x = 1 + \tan^2 x\). Thus, we have: \[ \sec^2 x + 2 = 1 + \tan^2 x + 2 = \tan^2 x + 3 \] So, the second term becomes: \[ \frac{\tan^2 x + 3}{\tan^2 x - 1} \] ### Step 4: Combine the two terms Now we need to combine the two simplified terms: \[ \frac{\sin\left(x + \frac{\pi}{4}\right)}{\sin\left(x - \frac{\pi}{4}\right)} - \frac{\tan^2 x + 3}{\tan^2 x - 1} \] ### Step 5: Find a common denominator To combine these fractions, we need a common denominator: \[ \text{Common Denominator} = \sin\left(x - \frac{\pi}{4}\right)(\tan^2 x - 1) \] ### Step 6: Rewrite the expression Rewriting the expression with the common denominator gives: \[ \frac{\sin\left(x + \frac{\pi}{4}\right)(\tan^2 x - 1) - (\tan^2 x + 3)\sin\left(x - \frac{\pi}{4}\right)}{\sin\left(x - \frac{\pi}{4}\right)(\tan^2 x - 1)} \] ### Step 7: Simplify the numerator Now we need to simplify the numerator. This may involve expanding and combining like terms. ### Step 8: Final simplification After simplifying the numerator, we can analyze the expression further to see if it can be simplified to a more recognizable form. ### Final Answer Upon completing the above steps, you will arrive at the simplified form of the original expression.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|23 Videos

Similar Questions

Explore conceptually related problems

Lim_(xrarr0)(1+sinx-cosx+ln(1-x))/(x.tan^(2)x)

If m=sinx+cos x+tan x+cot x+sec x+cosec x and n=sinx+cosx-tanx-cotx-secx-cosecx then (m+n-2)(m-n)=( where x is an acute angle )

Knowledge Check

  • If log_(sinx)(cos x) = (1)/(2) , where x in (0, (pi)/(2)) , then the value of sin x is equal to-

    A
    `(1)/(sqrt(3))`
    B
    `(sqrt(5) - 1)/(2)`
    C
    `(2)/(sqrt(3))`
    D
    `(sqrt(5) + 1)/(2)`
  • If y=(log_(cosx)sinx)(log_(sinx)cosx)+"sin"""^(-1)(2x)/(1+x^(2)) , then (dy)/(dx) at x=(pi)/(2) is equal to

    A
    `(8)/(pi^(2)+4)`
    B
    0
    C
    `(-8)/(pi+4)`
    D
    1
  • The value of int((tan^(-1)(sinx+1))cosx)/((3+2sinx-cos^(2)x))dx is (where c is the constant of integration)

    A
    `tan^(-1)(sinx)+c`
    B
    `(tan^(-1)(sinx))^(2)+c`
    C
    `((tan^(-1)(sinx+1)^(2)))/(2)+c`
    D
    `((tan^(-1)(sinx))^(2))/(2)+c`
  • Similar Questions

    Explore conceptually related problems

    tan^(-1)((cosx+sinx)/(cos x-sinx))

    Prove that : tan^(-1)((cosx)/(1-sinx))-cot^(-1)(sqrt((1+cosx)/(1-cosx)))=(pi)/(4), x in (0, pi//2) .

    int_0^(pi//2)(sinx-cos x)/(1+sinx cos x) dx

    If Delta (x)=|{:(1,cos x,1-cos x),(1+sin x,cos x,1+sinx-cosx),(sinx,sinx,1):}| then int_(0)^(pi//2)Delta(x) dx is equal to

    If sinx +cosx=(sqrt7)/(2) , where x in [0, (pi)/(4)], then the value of tan.(x)/(2) is equal to