Home
Class 12
MATHS
If x=sin(alpha-beta)*sin(gamma-delta), ...

If `x=sin(alpha-beta)*sin(gamma-delta), y=sin(beta-gamma)*sin(alpha-delta), z=sin(gamma-alpha)*sin(beta-delta)`, then :

A

`x+y+z=0`

B

`x^(3)+y^(3)+z^(3)=3xyz`

C

`x+y-z=0`

D

`x^(3)+y^(3)-z^(3)=3xyz`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given expressions for \( x \), \( y \), and \( z \): 1. **Given Expressions**: \[ x = \sin(\alpha - \beta) \cdot \sin(\gamma - \delta) \] \[ y = \sin(\beta - \gamma) \cdot \sin(\alpha - \delta) \] \[ z = \sin(\gamma - \alpha) \cdot \sin(\beta - \delta) \] 2. **Using the Product-to-Sum Formula**: We apply the product-to-sum identities for sine: \[ \sin A \cdot \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)] \] 3. **Calculating \( 2x \)**: \[ 2x = 2 \sin(\alpha - \beta) \cdot \sin(\gamma - \delta) = \cos(\alpha - \beta - (\gamma - \delta)) - \cos(\alpha - \beta + (\gamma - \delta)) \] Simplifying: \[ 2x = \cos(\alpha - \beta - \gamma + \delta) - \cos(\alpha - \beta + \gamma - \delta) \] 4. **Calculating \( 2y \)**: \[ 2y = 2 \sin(\beta - \gamma) \cdot \sin(\alpha - \delta) = \cos(\beta - \gamma - (\alpha - \delta)) - \cos(\beta - \gamma + (\alpha - \delta)) \] Simplifying: \[ 2y = \cos(\beta - \gamma - \alpha + \delta) - \cos(\beta - \gamma + \alpha - \delta) \] 5. **Calculating \( 2z \)**: \[ 2z = 2 \sin(\gamma - \alpha) \cdot \sin(\beta - \delta) = \cos(\gamma - \alpha - (\beta - \delta)) - \cos(\gamma - \alpha + (\beta - \delta)) \] Simplifying: \[ 2z = \cos(\gamma - \alpha - \beta + \delta) - \cos(\gamma - \alpha + \beta - \delta) \] 6. **Adding \( 2x + 2y + 2z \)**: Now we add these three equations: \[ 2x + 2y + 2z = [\cos(\alpha - \beta - \gamma + \delta) - \cos(\alpha - \beta + \gamma - \delta)] + [\cos(\beta - \gamma - \alpha + \delta) - \cos(\beta - \gamma + \alpha - \delta)] + [\cos(\gamma - \alpha - \beta + \delta) - \cos(\gamma - \alpha + \beta - \delta)] \] 7. **Using the Property of Cosine**: We can use the property that \( \cos(-\theta) = \cos(\theta) \) to simplify the terms. When we combine these, we find that they cancel out in pairs, leading to: \[ 2x + 2y + 2z = 0 \] 8. **Final Result**: From the equation \( 2x + 2y + 2z = 0 \), we can conclude that: \[ x + y + z = 0 \] Using the identity \( x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) \), since \( x + y + z = 0 \), we have: \[ x^3 + y^3 + z^3 - 3xyz = 0 \] Therefore, we conclude: \[ x^3 + y^3 + z^3 = 3xyz \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Matching Type Problems|2 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|23 Videos

Similar Questions

Explore conceptually related problems

cos (alpha + beta) cos gamma-cos (beta + gamma) cos alpha = sin beta sin (gamma-alpha)

lf, cos (x + alpha) cos (x + beta), cos (x + gamma) sin (x + alpha), sin (x + beta), sin (x + gamma) sin (beta + gamma), sin ( gamma-alpha), sin (alpha-beta) then (Given alpha! = beta! = gamma), sin (alpha-beta)

Knowledge Check

  • If f(x)=|{:(cos(x+alpha),cos(x+beta),cos(x+gamma)),(sin(x+alpha),sin(x+beta),sin(x+gamma)),(sin(beta-gamma),sin(gamma-alpha),sin(alpha-beta)):}| and f(2) =5 "the" overset(20)underset(r=1)sumf(r) is equal to

    A
    5
    B
    10
    C
    100
    D
    none of these
  • If cos(alpha+beta)sin(gamma +delta) = cos(alpha-beta)sin(gamma-delta) , then the value of cotalpha*cotbeta.cotgamma is :

    A
    `cotalpha`
    B
    `cotbeta`
    C
    `cotdelta`
    D
    `cot(alpha+beta+gamma+delta)`
  • Similar Questions

    Explore conceptually related problems

    If ,cos(x+alpha)cos(x+beta),cos(x+gamma)sin(x+alpha),sin(x+beta),sin(x+gamma)sin(beta-gamma),sin(gamma-alpha),sin(alpha-beta) and f(2),=6, then find (1)/(5)sum_(r=1)^(25)f(r)

    If cos (alpha + beta) sin (gamma + delta) = cos (alpha - beta) sin (gamma - delta) then:

    If ,cos(x+alpha)cos(x+beta),cos(x+gamma)sin(x+alpha),sin(x+beta),sin(x+gamma)sin(beta-gamma),sin(gamma-alpha),sin(alpha-beta) and f(0)=-2, then ,sum_(r=1)^(30)|f(r)| equals

    Let alpha,beta and gamma are the angles of a right angle triangle,then the value of sin alpha*sin beta*sin(alpha-beta)+sin beta*sin gamma*sin(beta-gamma)+sin gamma*sin alpha*sin(gamma-beta)+sin(beta-gamma)*sin(gamma-gamma)*sin(gamma-

    prove that | (sin alpha, sin beta, sin gamma), (cos alpha, cos beta, cos gamma), (sin 2alpha, sin 2beta, sin 2gamma) | = 4sin (1/2) (beta-gamma) * sin (1/2) (gamma-alpha) * sin (1/2) (alpha-beta) xx {sin (beta + gamma) + sin (gamma + alpha) + sin (alpha + beta)}.

    If f(x) = |(cos(x + alpha), cos(x+beta), cos(x + gamma)),(sin(x + alpha), sin(x+beta), sin(x + gamma)), (sin(beta - gamma), sin(gamma - alpha), sin(alpha - beta))| and f(2) = -2, then |sum_(r=1)^20 f(r)| equals