Home
Class 12
MATHS
IF A=[{:(1,2,2),(2,1,2),(2,2,1):}] then ...

IF `A=[{:(1,2,2),(2,1,2),(2,2,1):}]` then show that `A^2-4A-5I=O`.

Answer

Step by step text solution for IF A=[{:(1,2,2),(2,1,2),(2,2,1):}] then show that A^2-4A-5I=O. by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • IPE:MAY -2017[AP]

    SRISIRI PUBLICATION|Exercise SECTION-C (LAQs)|6 Videos
  • IPE:MAY -2017[AP]

    SRISIRI PUBLICATION|Exercise SECTION-C (LAQs)|6 Videos
  • IPE:MAT-2019(AP)

    SRISIRI PUBLICATION|Exercise IPE:MAY-2019(AP) (MATHS-1A)|22 Videos
  • IPE:MAY-2014

    SRISIRI PUBLICATION|Exercise SECTION-C|7 Videos

Similar Questions

Explore conceptually related problems

IF 3A=[{:(1,2,2),(2,1,-2),(-2,2,-1):}] then show that A^-1=A' .

IF A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}] then show that adjA=3A^T Also find A^-1

IF A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}] then show that adj A=3A^T . Also find A^-1 .

If A=[{:(1,-2,1),(0,1,-1),(3,-1,1):}] then show that A^3-3A^2-A-3I=O , where I is unit matrix of order 3

IF A=[{:(1,-2,1),(0,1,-1),(3,-1,1):}] then show that A^3-3A^2-A-31=O

If A=[(1,2,3),(3,-2,1),(4,2,1)] , then show that A^(3)-23A-40I=0

If A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}] , then show that the ad joint of A = 3A' find A^(-1) .

A=[{:(1,2,2),(2,1,2),(2,2,1):}] , then A^(3) - 4A^(2) -6A is equal to

If A= {:[( 1,2),(4,2) ]:} , then show that |2A| =4|A|

If A=[(3,1),(-1,2)] , show that A^(2)-5A+7I=0 .