Home
Class 12
MATHS
The function f(x) = (1-sin x + cos x)/(1...

The function `f(x) = (1-sin x + cos x)/(1+sin x + cosx)` is not defined at `x = pi`. The value of `f(pi)`, so that f(x) is continuous at `x = pi` is

A

`1/2`

B

`1/2`

C

`-1`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f(\pi) \) such that the function \( f(x) = \frac{1 - \sin x + \cos x}{1 + \sin x + \cos x} \) is continuous at \( x = \pi \), we need to evaluate the limit of \( f(x) \) as \( x \) approaches \( \pi \). ### Step-by-Step Solution: 1. **Identify the Function**: The function is given as: \[ f(x) = \frac{1 - \sin x + \cos x}{1 + \sin x + \cos x} \] 2. **Evaluate the Function at \( x = \pi \)**: First, we need to check if \( f(\pi) \) is defined: \[ f(\pi) = \frac{1 - \sin(\pi) + \cos(\pi)}{1 + \sin(\pi) + \cos(\pi)} = \frac{1 - 0 - 1}{1 + 0 - 1} = \frac{0}{0} \] Since this results in an indeterminate form \( \frac{0}{0} \), we need to find the limit as \( x \) approaches \( \pi \). 3. **Finding the Limit**: We will compute the limit: \[ \lim_{x \to \pi} f(x) = \lim_{x \to \pi} \frac{1 - \sin x + \cos x}{1 + \sin x + \cos x} \] As \( x \) approaches \( \pi \), both the numerator and denominator approach \( 0 \). Therefore, we can apply L'Hôpital's Rule. 4. **Differentiate the Numerator and Denominator**: Differentiate the numerator: \[ \frac{d}{dx}(1 - \sin x + \cos x) = -\cos x - \sin x \] Differentiate the denominator: \[ \frac{d}{dx}(1 + \sin x + \cos x) = \cos x - \sin x \] 5. **Apply L'Hôpital's Rule**: Now we apply L'Hôpital's Rule: \[ \lim_{x \to \pi} f(x) = \lim_{x \to \pi} \frac{-\cos x - \sin x}{\cos x - \sin x} \] 6. **Evaluate the Limit at \( x = \pi \)**: Substitute \( x = \pi \): \[ \cos(\pi) = -1, \quad \sin(\pi) = 0 \] Therefore, \[ \lim_{x \to \pi} f(x) = \frac{-(-1) - 0}{-1 - 0} = \frac{1}{-1} = -1 \] 7. **Conclusion**: To make \( f(x) \) continuous at \( x = \pi \), we set: \[ f(\pi) = -1 \] ### Final Answer: The value of \( f(\pi) \) so that \( f(x) \) is continuous at \( x = \pi \) is \( -1 \).
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Critical Thinking|80 Videos
  • BINOMIAL DISTRIBUTION

    TARGET PUBLICATION|Exercise EVALUTION TEST|12 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=(1-sinx+cosx)/(1+sinx+cosx) is not defined at x=pi . The value of f(pi) , so that f(x) is continuous at x=pi , is

The function f(x)=(1-sinx+cosx)/(1+sinx+cosx) is not defined at x=pi . The value of f(pi) so that f(x) is continuous at x=pi is

The function f(x)=(1-sinx+cosx)/(1+sinx+cosx) is nto defined at x=pi . The value of f(pi) so that f(x) is continuous at x=pi is:

The function f(x) = sin x - x cos pi is

The function f(x)=(sin 2x)^(tan^(2)2x) is not defined at x=(pi)/(4) . The value of f(pi//4) , so that f is continuous at x=pi//4 , is

The function f(x)=(sinx)^(tan^(2)x) is not defined at x=(pi)/(2) . The value of f((pi)/(2)) such that f is continuous at x=(pi)/(2) is

f(x)= (1-sinx+cosx)/(1+sinx+cosx) discontinuous at x=pi . Find f(pi) so that f(x) is continuous x=pi

Let the function f(x) = tan^(1-) (sin x + cos x) be defined on [ 0, 2 pi] Then f(x) is

If f(x)=(sqrt(2)cos x-1)/(cot x-1),x!=(pi)/(4). Find the value of f((pi)/(4)) so that f(x) becomes continuous at x=pi/4

TARGET PUBLICATION-CONTINUITY-Competitive Thinking
  1. If the function f(x) = {((cosx)^(1/x), ",", x != 1),(k, ",", x = 1):} ...

    Text Solution

    |

  2. If f(x) = {((log(e )x)/(x-1), ",", x != 1),(k, ",", x = 1):} is contin...

    Text Solution

    |

  3. The function f(x) = (1-sin x + cos x)/(1+sin x + cosx) is not defined ...

    Text Solution

    |

  4. If {:(f(x),=((e^(kx)-1)^(2)sinx)/(x^(3)),",",x != 0),(,=4, ",",x = 0):...

    Text Solution

    |

  5. If f(x) = (e^(x^2)-cos x)/(x^(2)), "for" x != 0 is continuous at x = 0...

    Text Solution

    |

  6. For what value of k, the function defined by {:(f(x),=(log(1+2x)sinx^(...

    Text Solution

    |

  7. If {:(f(x),=log(1-3x)(1+3x),",",x != 0),(,=k, ",",x = 0):} is contin...

    Text Solution

    |

  8. If {:(f(x),=(log)(sec^2x)^(cot^2x),",","for"x != 0),(,=k, ",","for"x =...

    Text Solution

    |

  9. If the function {:(f(x),=[log((pi)/4+x)]^(1/x),",","for"x != 0),(,=k, ...

    Text Solution

    |

  10. Function f(x) = {((log(2)2x)^(log(x)8), ",", x != 1),((k-1)^(3), ",", ...

    Text Solution

    |

  11. For the function f(x) = (log(e )(1+x)-log(e )(1-x))/(x) to be continuo...

    Text Solution

    |

  12. The function f(x) = (log(1+ax)-log(1-bx))/(x) is not defined at x = 0....

    Text Solution

    |

  13. If the function f(x) = {((x^(2)-(A+2)x+A)/(x-2), ",", x != 2),(2, ",",...

    Text Solution

    |

  14. The value of k which makes f(x) = {((sin(1/x)), ",", x != 0),(k, ","...

    Text Solution

    |

  15. If the function f(x) defined by {:(f(x),=x (sin)1/x,",","for"x != 0)...

    Text Solution

    |

  16. If f(x) = {(ax^(2)-b, ",", "when" 0 le x le 1),(2, ",","when"x = 1),(x...

    Text Solution

    |

  17. If f(x) = {(sin x, ",", "if" x le 0),(x^(2)+a^(2), ",", "if" 0 lt x l...

    Text Solution

    |

  18. If f(x) = {((1-sinzx)/(pi-2x), ",", x != pi/2),(lambda, ",", x = pi/2...

    Text Solution

    |

  19. If a function of defined by f(x) = {((1-sinzx)/(pi-2x), ",","if" x != ...

    Text Solution

    |

  20. Let f(x) = {((tan x - cot x)/(x-pi/4), ",", x != pi/4),(a, ",", x = p...

    Text Solution

    |