Home
Class 11
PHYSICS
If vec(a) and vec(b) are two vectors the...

If `vec(a) and vec(b)` are two vectors then the value of `(vec(a) + vec(b)) xx (vec(a) - vec(b))` is

A

`2(vec(b) xx vec(a))`

B

`-2(vec(b) xx vec(a))`

C

`(vec(b) xx vec(a))`

D

`vec(a) xx vec(b)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \((\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})\). ### Step-by-Step Solution: 1. **Apply the Cross Product Distributive Property**: We can expand the expression using the distributive property of the cross product: \[ (\vec{a} + \vec{b}) \times (\vec{a} - \vec{b}) = \vec{a} \times \vec{a} - \vec{a} \times \vec{b} + \vec{b} \times \vec{a} - \vec{b} \times \vec{b} \] 2. **Evaluate the Cross Products**: - The cross product of any vector with itself is zero: \[ \vec{a} \times \vec{a} = \vec{0} \] \[ \vec{b} \times \vec{b} = \vec{0} \] - Thus, we can simplify the expression: \[ \vec{0} - \vec{a} \times \vec{b} + \vec{b} \times \vec{a} - \vec{0} = -\vec{a} \times \vec{b} + \vec{b} \times \vec{a} \] 3. **Use the Property of Cross Products**: The cross product is anti-commutative, meaning: \[ \vec{b} \times \vec{a} = -(\vec{a} \times \vec{b}) \] Therefore, we can substitute: \[ -\vec{a} \times \vec{b} - \vec{a} \times \vec{b} = -2\vec{a} \times \vec{b} \] 4. **Final Result**: Thus, the value of the expression \((\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})\) is: \[ -2\vec{a} \times \vec{b} \] ### Summary: The final answer is: \[ (\vec{a} + \vec{b}) \times (\vec{a} - \vec{b}) = -2\vec{a} \times \vec{b} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SCALARS AND VECTORS

    TARGET PUBLICATION|Exercise Evaluation Test|19 Videos
  • SCALARS AND VECTORS

    TARGET PUBLICATION|Exercise Critical Thinking|36 Videos
  • REFRACTION OF LIGHT

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos

Similar Questions

Explore conceptually related problems

If vec(a) and vec(B) are two vectors such that |vec(a)|=|vec(b)|=sqrt(2) and vec(a).vec(b)=-1 , find the angle between vec(a) and vec(b) .

If vec a, and vec b are unit vectors,then find the greatest value of |vec a+vec b|+|vec a-vec b|

Knowledge Check

  • If vec(a) and vec(b) are two unit vectors, then the vector (vec(a) + vec(b)) xx (vec(a) xx vec(b)) is parallel to

    A
    `(hat(a)- hat(b))`
    B
    `(hat(a)+ hat(b))`
    C
    `(2 hat(a) - hat(b))`
    D
    `(2 hat(a) + hat(b))`
  • If vec(a) and vec(b) are unit vectors, then what is the value of |vec(a) xx vec(b)|^(2) + (vec(a).vec(b))^(2) ?

    A
    A) 0
    B
    B) 2
    C
    C) 1
    D
    D) `1//2`
  • What is the value of (vec(A) + vec(B)) .(vec(A) xx vec(B)) ?

    A
    0
    B
    `A^(2) - B^(2)`
    C
    `A^(2) + B^(2) + 2AB`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    If vec a and vec b are vectors of equal magnitude, write the value of (vec a+vec b)vec a-vec b

    vec a and vec b are two non-collinear vectors then the value of {(vec a)/(|vec a|^(2))-(vec b)/(|vec b|^(2))} is equal to

    If vec(A) and vec(B) are two such vectors that |vec(A)| = 2, |vec(B)| = 7 and vec(A) xx vec(B) = 3 hati +2 hatj + 6 hatk , find the angle between vec(A) and vec(B) .

    If vec(a) and vec(b) are two vectors such that vec(a).vec(b) = 0 and vec(a) xx vec(b) = 0 , then which one of the following is correct?

    If vec(b) and vec(c) are two non-collinear vectors such that vec(a) || (vec(b) xx vec(c)) , then (vec(a) xx vec(b)).(vec(a) xx vec(c)) is equal to