Home
Class 11
PHYSICS
The component of vector vec(A) = a(x) ha...

The component of vector `vec(A) = a_(x) hat(i) + a_(y) hat(j) + a_(z) hat(k)` along the direction of `hat(j) - hat(k)` is

A

`a_(x) - a_(y) +a_(z)`

B

`a_(z) - a_(y)`

C

`(a_(x) - a_(y)) //sqrt2`

D

`(a_(y) - a_(z))/(sqrt2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the component of the vector \( \vec{A} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k} \) along the direction of \( \hat{j} - \hat{k} \), we can follow these steps: ### Step 1: Identify the Direction Vector The direction we need to consider is given by \( \hat{j} - \hat{k} \). We can denote this direction vector as \( \vec{B} \): \[ \vec{B} = \hat{j} - \hat{k} \] ### Step 2: Calculate the Magnitude of the Direction Vector To find the unit vector in the direction of \( \vec{B} \), we first calculate its magnitude: \[ |\vec{B}| = \sqrt{(0)^2 + (1)^2 + (-1)^2} = \sqrt{0 + 1 + 1} = \sqrt{2} \] ### Step 3: Find the Unit Vector in the Direction of \( \vec{B} \) Now, we can find the unit vector \( \hat{b} \): \[ \hat{b} = \frac{\vec{B}}{|\vec{B}|} = \frac{\hat{j} - \hat{k}}{\sqrt{2}} = \frac{1}{\sqrt{2}} \hat{j} - \frac{1}{\sqrt{2}} \hat{k} \] ### Step 4: Calculate the Dot Product of \( \vec{A} \) and \( \hat{b} \) The component of \( \vec{A} \) along the direction of \( \hat{b} \) can be found using the dot product: \[ \text{Component of } \vec{A} \text{ along } \hat{b} = \vec{A} \cdot \hat{b} \] Substituting \( \vec{A} \) and \( \hat{b} \): \[ \vec{A} \cdot \hat{b} = (a_x \hat{i} + a_y \hat{j} + a_z \hat{k}) \cdot \left(\frac{1}{\sqrt{2}} \hat{j} - \frac{1}{\sqrt{2}} \hat{k}\right) \] ### Step 5: Perform the Dot Product Calculating the dot product: \[ \vec{A} \cdot \hat{b} = a_x \hat{i} \cdot \left(\frac{1}{\sqrt{2}} \hat{j} - \frac{1}{\sqrt{2}} \hat{k}\right) + a_y \hat{j} \cdot \left(\frac{1}{\sqrt{2}} \hat{j} - \frac{1}{\sqrt{2}} \hat{k}\right) + a_z \hat{k} \cdot \left(\frac{1}{\sqrt{2}} \hat{j} - \frac{1}{\sqrt{2}} \hat{k}\right) \] Since \( \hat{i} \cdot \hat{j} = 0 \) and \( \hat{i} \cdot \hat{k} = 0 \): \[ = 0 + a_y \cdot \frac{1}{\sqrt{2}} - a_z \cdot \frac{1}{\sqrt{2}} = \frac{a_y - a_z}{\sqrt{2}} \] ### Step 6: Final Result Thus, the component of the vector \( \vec{A} \) along the direction of \( \hat{j} - \hat{k} \) is: \[ \frac{a_y - a_z}{\sqrt{2}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SCALARS AND VECTORS

    TARGET PUBLICATION|Exercise Competitive Thinking|64 Videos
  • REFRACTION OF LIGHT

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos

Similar Questions

Explore conceptually related problems

Find the components of vector vec(a)=3hat(i)+4hat(j) along the direction of vectors hat(i)+hat(j) & hat(i)-hat(j)

Find the (a) scalar component and (b) vector component of vec(A) = 3 hat(i) + 4 hat(j) + 5 hat(k) on vec(B) = hat(i) + hat(j) + hat(k) .

Knowledge Check

  • The vector component of vector vec(A) = 3 hat(i) + 4 hat(j) + 5 hat(k) along vector vec(B) = hat(i) + hat(j) + hat(k) is

    A
    `2 hat (i) + 2 hat(j) + 2 hat(k)`
    B
    `3 hat (i) + 3 hat(j) + 3 hat(k)`
    C
    `4 hat (i) + 4 hat(j) + 4 hat(k)`
    D
    `5 hat (i) + 5 hat(j) + 5 hat(k)`
  • If vec(r )= x hat(i) + y hat(j) + z hat(k) , then what is vec(r ). (hat(i ) + hat(j) + hat(k)) equal to?

    A
    x
    B
    `x+y`
    C
    `-(x+y+z)`
    D
    `(x+y+z)`
  • Let overset(to)(a) =a_(1) hat(i) + a_(2) hat(j) + a_(3) hat(k) , overset(to)(a) = b_(1) hat(i) +b_(2) hat(j) +b_(3) hat(k) " and " overset(to)(a) = c_(1) hat(i) +c_(2) hat(j) + c_(3) hat(k) be three non- zero vectors such that overset(to)(c ) is a unit vectors perpendicular to both the vectors overset(to)(c ) and overset(to)(b) . If the angle between overset(to)(a) " and " overset(to)(n) is (pi)/(6) then |{:(a_(1),,a_(2),,a_(3)),(b_(1),,b_(2),,b_(3)),(c_(1),,c_(2),,c_(3)):}| is equal to

    A
    0
    B
    1
    C
    `(1)/(4) (a_(1)^(2) +a_(2)^(2) +a_(3)^(2))(b_(1)^(2)+b_(1)^(2) +b_(3)^(2))`
    D
    `(3)/(4) (a_(1)^(2)+a_(2)^(2))(b_(1)^(2)+b_(2)^(2)+a_(3)^(2))(c_(1)^(2)+c_(2)^(2)+c_(3)^(2))`
  • Similar Questions

    Explore conceptually related problems

    Find the component of a vector vec A = 3 hat I + 4 hat j along the direction of 2hat I -3 hat j .

    Find the component of a vectro vec A = 3 hat I + 2 hat j along the direction of ( hat I + hat j)

    hat(i) and hat(j) are unit vectors along x-and y-axes respectively. What is the magnitude and the direction of the vectors hat(i)+hat(j) and hat(i)-hat(j) ? What are the components of a vector vec(A)=2hat(i)+3hat(j) along the direction hat(i)+hat(j) and hat(i)-hat(j) ?

    Find the area of the parallelogram whose adjacent sides are represented by the vectors (i) vec(a)=hat(i) + 2 hat(j)+ 3 hat(k) and vec(b)=-3 hat(i)- 2 hat(j) + hat(k) (ii) vec(a)=(3 hat(i)+hat(j) + 4 hat(k)) and vec(b)= ( hat(i)- hat(j) + hat(k)) (iii) vec(a) = 2 hat(i)+ hat(j) +3 hat(k) and vec(b)= hat(i)-hat(j) (iv) vec(b)= 2 hat(i) and vec(b) = 3 hat(j).

    If vec(A) = a_(x)hat(i) + a_(y)hat(j) + a_(z)hat(k) and vec(B) = b_(x)hat(i) + b_(y)hat(j)+b_(z)hat(k) . Then the component of vec(B) + vec(A) along z-axis is :