Home
Class 12
MATHS
The element of second row and third colu...

The element of second row and third column in the inverse of `[[1, 2, 1], [2, 1, 0], [-1, 0, 1]]` is

A

`-2`

B

`-1`

C

`1`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the element of the second row and third column in the inverse of the matrix \( A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a \( 3 \times 3 \) matrix can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: \[ A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \] We can expand the determinant along the first row: \[ \text{det}(A) = 1 \cdot \text{det}\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - 2 \cdot \text{det}\begin{bmatrix} 2 & 0 \\ -1 & 1 \end{bmatrix} + 1 \cdot \text{det}\begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix} \] Calculating the determinants of the \( 2 \times 2 \) matrices: 1. \( \text{det}\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1 \) 2. \( \text{det}\begin{bmatrix} 2 & 0 \\ -1 & 1 \end{bmatrix} = 2 \cdot 1 - 0 \cdot (-1) = 2 \) 3. \( \text{det}\begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix} = 2 \cdot 0 - 1 \cdot (-1) = 1 \) Now substituting back: \[ \text{det}(A) = 1 \cdot 1 - 2 \cdot 2 + 1 \cdot 1 = 1 - 4 + 1 = -2 \] ### Step 2: Calculate the Cofactor Matrix The cofactor \( C_{ij} \) is calculated as \( (-1)^{i+j} \) times the determinant of the submatrix formed by deleting the \( i \)-th row and \( j \)-th column. We need to find \( C_{23} \) (the cofactor for the second row and third column): \[ C_{23} = (-1)^{2+3} \cdot \text{det}\begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix} \] Calculating the determinant: \[ \text{det}\begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix} = 1 \cdot 0 - 2 \cdot (-1) = 2 \] Thus, \[ C_{23} = -2 \] ### Step 3: Form the Cofactor Matrix The cofactor matrix \( C \) is formed as follows: \[ C = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix} \] We have already calculated \( C_{23} = -2 \). We would need to calculate the other cofactors, but for our purpose, we only need \( C_{32} \) to find the element of the inverse matrix. ### Step 4: Calculate the Inverse Matrix The inverse of matrix \( A \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Where \( \text{adj}(A) \) is the transpose of the cofactor matrix. The element at the second row and third column of \( A^{-1} \) is given by: \[ (A^{-1})_{23} = \frac{-C_{32}}{\text{det}(A)} \] We need to calculate \( C_{32} \). ### Step 5: Calculate \( C_{32} \) To find \( C_{32} \): \[ C_{32} = (-1)^{3+2} \cdot \text{det}\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \] Calculating the determinant: \[ \text{det}\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = 1 \cdot 1 - 2 \cdot 2 = 1 - 4 = -3 \] Thus, \[ C_{32} = -(-3) = 3 \] ### Step 6: Final Calculation Now substituting back into our formula for \( (A^{-1})_{23} \): \[ (A^{-1})_{23} = \frac{-C_{32}}{\text{det}(A)} = \frac{-3}{-2} = \frac{3}{2} \] ### Conclusion The element of the second row and third column in the inverse of the matrix \( A \) is: \[ \frac{3}{2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

The inverse of the matrix [[3, -2, -1], [-4, 1, -1], [2, 0, 1]] is

The inverse of the matrix [[1, 0, 1], [0, 2, 3], [1, 2, 1]] is

Knowledge Check

  • The element of second row and third column in the inverse of [[1, 2, -3], [0, 1, 2], [0, 0, 1]] is

    A
    `-2`
    B
    `0`
    C
    `1`
    D
    `7`
  • The inverse of [[0, 0, 1], [0, 1, 0], [1, 0, 0]] is

    A
    `[[1, 0, 0], [0, 1, 0], [0, 0, 1]]`
    B
    `[[0, 0, -1], [0, -1, 0], [0, 0, -1]]`
    C
    `[[0, 0, 1], [0, 1, 0], [1, 0, 0]]`
    D
    `[[-1, 0, 0], [0, 1, 0], [0, 0, 1]]`
  • The inverse of the matrix [[1, 0, 0], [2, 1, 0], [3, 3, 1]] is

    A
    `-[[1, 0, 0], [-2, 1, 0], [3, -3, 1]]`
    B
    `[[1, 0, 0], [-2, 1, 0], [3, -3, 1]]`
    C
    `-[[1, -2, 3], [0, 1, -3], [0, 0, 1]]`
    D
    `[[1, -2, 3], [0, 1, -3], [0, 0, 1]]`
  • Similar Questions

    Explore conceptually related problems

    The inverse of the matrix [[2, 0, 0], [0, 1, 0], [0, 0, -1]] is

    The inverse of the matrix [[1, 2, -2], [0, -2, 1], [-1, 3, 0]] is

    The inverse of the matrix [[2, 0, -1], [5, 1, 0], [0, 1, 3]] is

    The inverse of the matrix [[2, 1, 3], [1, 0, 1], [1, 1, 1]] is

    The inverse of the matrix [[0, 1, 2], [1, 2, 3], [3, 1, 1]] is