Home
Class 12
MATHS
If A=[[1, 2, 3], [1, 3, 4], [3, 4, 3]], ...

If `A=[[1, 2, 3], [1, 3, 4], [3, 4, 3]]`, then `|A^(-1)|=`

A

`(1)/(4)`

B

`(-1)/(4)`

C

`4`

D

`-4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the determinant of the inverse of matrix \( A \), we can use the property that states: \[ |A^{-1}| = \frac{1}{|A|} \] First, we need to calculate the determinant of matrix \( A \). Given: \[ A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 4 \\ 3 & 4 & 3 \end{bmatrix} \] ### Step 1: Calculate the determinant of \( A \) We can calculate the determinant of \( A \) using the formula for the determinant of a 3x3 matrix: \[ |A| = a(ei - fh) - b(di - fg) + c(dh - eg) \] Where the matrix is represented as: \[ \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \] For our matrix \( A \): - \( a = 1, b = 2, c = 3 \) - \( d = 1, e = 3, f = 4 \) - \( g = 3, h = 4, i = 3 \) Substituting these values into the determinant formula: \[ |A| = 1(3 \cdot 3 - 4 \cdot 4) - 2(1 \cdot 3 - 4 \cdot 3) + 3(1 \cdot 4 - 3 \cdot 3) \] Calculating each part: 1. \( 3 \cdot 3 - 4 \cdot 4 = 9 - 16 = -7 \) 2. \( 1 \cdot 3 - 4 \cdot 3 = 3 - 12 = -9 \) 3. \( 1 \cdot 4 - 3 \cdot 3 = 4 - 9 = -5 \) Now substituting back into the determinant formula: \[ |A| = 1(-7) - 2(-9) + 3(-5) \] \[ |A| = -7 + 18 - 15 \] \[ |A| = -4 \] ### Step 2: Calculate the determinant of \( A^{-1} \) Using the property of determinants: \[ |A^{-1}| = \frac{1}{|A|} = \frac{1}{-4} = -\frac{1}{4} \] ### Final Answer Thus, the determinant of \( A^{-1} \) is: \[ |A^{-1}| = -\frac{1}{4} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A = [[1, 1, 3], [1, 3, -3], [-2, -4, -4]] , then A^(-1) is

If A=([1,2,3],[1,3,4],[1,4,3]), then | adj A| =

Knowledge Check

  • If A=[[3,-3,4],[2,-3,4],[0,-1,1]] , then

    A
    `adj(adjA)=A`
    B
    `abs(adj(adj(A)))=1`
    C
    `abs(adj(A))=1`
    D
    None of these
  • If A=[(3,-3,4),(2,-3,4),(0,-1,1)] , then A^(-1)=

    A
    A
    B
    `A^(2)`
    C
    `A^(3)`
    D
    `A^(4)`
  • If A=[(3,-3,4),(2,-3,4),(0,-1,1)] , then A^(-1)=

    A
    A
    B
    `A^(2)`
    C
    `A^(3)`
    D
    `A^(4)`
  • Similar Questions

    Explore conceptually related problems

    If A=[[3, -1, 4], [2, 3, 1]], B=[[1, 3, 4], [2, 1, 0], [-3, 2, 3]] find AB

    If A = [(2,2,1), (1,3,1), (1,2,2)] then A^-1+(A-5I) (AI)^2 = (i) 1/ 5 [[4,2, -1], [-1,3,1], [-1,2,4]] (ii) 1/5 [[4, -2, -1], [-1, 3, -1], [-1, -2,4]] (iii) 1/3 [[4,2, -1], [-1,3,1], [-1,2,4]] (iv) 1/3 [[4, -2, -1], [-1,3, -1], [-1, -2,4]]

    If the rank of A=[[1,2,3,4],[2,4,6,3],[3,6,1,1]] is 1 then lambda+mu =

    Find the value of | [ 2 , 4 ] , [ 1 , 3 ] | + | [ 4 , 1 ] , [ 1 , 3 ] | + | [ 3 , 3 ] , [ 1 , 3 ] | + | [ 1 , 2 ] , [ 1 , 3 ] |

    If A = {1, 2, 3, 4} , then a relation R= {(1, 1), (2, 2), (3, 3), (4, 4), "on" (2, 4), (1, 3), (1, 4), (1, 2)} set A is