Home
Class 12
MATHS
The inverse of the matrix [[1, 2, 3], [0...

The inverse of the matrix `[[1, 2, 3], [0, 2, 4], [0, 0, 5]]` is

A

`(1)/(5)[[5, -5, 1], [0, 5, -4], [0, 0, 2]]`

B

`(-1)/(5)[[5, -5, 1], [0, 5, -4], [0, 0, 2]]`

C

`(1)/(10)[[10, -10, 2], [0, 5, -4], [0, 0, 2]]`

D

`(-1)/(10)[[10, -10, 2], [0, 5, -4], [0, 0, 2]]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{bmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 3x3 matrix can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ \text{det}(A) = 1 \cdot (2 \cdot 5 - 4 \cdot 0) - 2 \cdot (0 \cdot 5 - 4 \cdot 0) + 3 \cdot (0 \cdot 0 - 2 \cdot 0) \] Calculating this gives: \[ \text{det}(A) = 1 \cdot (10) - 2 \cdot (0) + 3 \cdot (0) = 10 \] ### Step 2: Check if the Determinant is Non-Zero Since \( \text{det}(A) = 10 \) which is not equal to 0, the inverse of the matrix exists. ### Step 3: Calculate the Adjoint of Matrix A The adjoint of a matrix is the transpose of the cofactor matrix. We will first calculate the cofactor matrix. #### Step 3.1: Calculate the Cofactor Matrix The cofactor \( C_{ij} \) of an element \( a_{ij} \) is given by: \[ C_{ij} = (-1)^{i+j} \cdot \text{det}(M_{ij}) \] where \( M_{ij} \) is the minor matrix obtained by deleting the \( i \)-th row and \( j \)-th column. - **Cofactor \( C_{11} \)**: \[ C_{11} = \text{det}\begin{bmatrix} 2 & 4 \\ 0 & 5 \end{bmatrix} = (2 \cdot 5 - 4 \cdot 0) = 10 \] - **Cofactor \( C_{12} \)**: \[ C_{12} = -\text{det}\begin{bmatrix} 0 & 4 \\ 0 & 5 \end{bmatrix} = -(0 \cdot 5 - 4 \cdot 0) = 0 \] - **Cofactor \( C_{13} \)**: \[ C_{13} = \text{det}\begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix} = (0 \cdot 2 - 2 \cdot 0) = 0 \] - **Cofactor \( C_{21} \)**: \[ C_{21} = -\text{det}\begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} = -(2 \cdot 5 - 3 \cdot 0) = -10 \] - **Cofactor \( C_{22} \)**: \[ C_{22} = \text{det}\begin{bmatrix} 1 & 3 \\ 0 & 5 \end{bmatrix} = (1 \cdot 5 - 3 \cdot 0) = 5 \] - **Cofactor \( C_{23} \)**: \[ C_{23} = -\text{det}\begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix} = -(1 \cdot 2 - 2 \cdot 0) = -2 \] - **Cofactor \( C_{31} \)**: \[ C_{31} = \text{det}\begin{bmatrix} 2 & 3 \\ 2 & 4 \end{bmatrix} = (2 \cdot 4 - 3 \cdot 2) = 2 \] - **Cofactor \( C_{32} \)**: \[ C_{32} = -\text{det}\begin{bmatrix} 1 & 3 \\ 0 & 4 \end{bmatrix} = -(1 \cdot 4 - 3 \cdot 0) = -4 \] - **Cofactor \( C_{33} \)**: \[ C_{33} = \text{det}\begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix} = (1 \cdot 2 - 2 \cdot 0) = 2 \] The cofactor matrix \( C \) is: \[ C = \begin{bmatrix} 10 & 0 & 0 \\ -10 & 5 & -2 \\ 2 & -4 & 2 \end{bmatrix} \] #### Step 3.2: Transpose the Cofactor Matrix The adjoint \( \text{adj}(A) \) is the transpose of the cofactor matrix: \[ \text{adj}(A) = C^T = \begin{bmatrix} 10 & -10 & 2 \\ 0 & 5 & -4 \\ 0 & -2 & 2 \end{bmatrix} \] ### Step 4: Calculate the Inverse of Matrix A Using the formula for the inverse: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we have: \[ A^{-1} = \frac{1}{10} \cdot \begin{bmatrix} 10 & -10 & 2 \\ 0 & 5 & -4 \\ 0 & -2 & 2 \end{bmatrix} \] This simplifies to: \[ A^{-1} = \begin{bmatrix} 1 & -1 & 0.2 \\ 0 & 0.5 & -0.4 \\ 0 & -0.2 & 0.2 \end{bmatrix} \] ### Final Answer The inverse of the matrix \( A \) is: \[ A^{-1} = \begin{bmatrix} 1 & -1 & 0.2 \\ 0 & 0.5 & -0.4 \\ 0 & -0.2 & 0.2 \end{bmatrix} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

The inverse of the matrix [[3, -2, -1], [-4, 1, -1], [2, 0, 1]] is

2.The inverse of the matrix [[2,3],[-4,-5]] is

Knowledge Check

  • The inverse of the matrix [[1, 2, -2], [0, -2, 1], [-1, 3, 0]] is

    A
    `[[3, 6, 2], [1, 2,1], [2, 5, 2]]`
    B
    `[[3, 6, 2], [10, 2, 1], [2, 5, 2]]`
    C
    `-[[3, 6, 2], [2, 5, 2], [1, 2, 1]]`
    D
    `[[2, 5, 2], [3, 6, 2], [1, 2, 1]]`
  • The inverse of the matrix [[1, 0, 1], [0, 2, 3], [1, 2, 1]] is

    A
    `(-1)/(6)[[-4, 2, -2], [3, 0, -3], [-2, -2, 2]]`
    B
    `(1)/(6)[[-4, 2, -2], [3, 0, -3], [-2, -2, 2]]`
    C
    `[[-2, 1, -1], [1, 0, -1], [-2, -2, 2]]`
    D
    `[[2, -1, 1], [-1, 0, 1], [2, 2, -2]]`
  • The inverse of the matrix [[2, 0, 0], [0, 1, 0], [0, 0, -1]] is

    A
    `[[(1)/(2), 0, 0], [0, 1, 0], [0, 0, -1]]`
    B
    `[[-(1)/(2), 0, 0], [0, -1, 0], [0, 0, 1]]`
    C
    `[[-1, 0, 0], [0, -(1)/(2), 0], [0, 0, (1)/(2)]]`
    D
    `(-1)/(2)[[-(1)/(2), 0, 0], [0, -1, 0], [0, 0, -1]]`
  • Similar Questions

    Explore conceptually related problems

    The inverse of the matrix [[1, 0, 0], [3, 3, 0], [5, 2, -1]] is

    The inverse of the matrix [[1, 2, -2], [-3, 0, -5], [2, 5, 0]] is

    The inverse of the matrix [[2, 0, -1], [5, 1, 0], [0, 1, 3]] is

    The inverse of the matrix [[1, 0, 0], [2, 1, 0], [3, 3, 1]] is

    The inverse of the matrix [[0, 1, 2], [1, 2, 3], [3, 1, 1]] is