Home
Class 12
MATHS
The inverse of the matrix [[1, 2, -2], [...

The inverse of the matrix `[[1, 2, -2], [0, -2, 1], [-1, 3, 0]]` is

A

`[[3, 6, 2], [1, 2,1], [2, 5, 2]]`

B

`[[3, 6, 2], [10, 2, 1], [2, 5, 2]]`

C

`-[[3, 6, 2], [2, 5, 2], [1, 2, 1]]`

D

`[[2, 5, 2], [3, 6, 2], [1, 2, 1]]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{bmatrix} 1 & 2 & -2 \\ 0 & -2 & 1 \\ -1 & 3 & 0 \end{bmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 3x3 matrix \( A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \) is calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: - \( a = 1, b = 2, c = -2 \) - \( d = 0, e = -2, f = 1 \) - \( g = -1, h = 3, i = 0 \) Calculating the determinant: \[ \text{det}(A) = 1((-2)(0) - (1)(3)) - 2((0)(0) - (1)(-1)) + (-2)((0)(3) - (-2)(-1)) \] \[ = 1(0 - 3) - 2(0 + 1) - 2(0 - 2) \] \[ = -3 - 2 + 4 \] \[ = -1 \] ### Step 2: Check if the Determinant is Non-Zero Since \( \text{det}(A) = -1 \neq 0 \), the inverse of the matrix exists. ### Step 3: Calculate the Cofactor Matrix The cofactor matrix \( C \) is obtained by calculating the cofactors \( C_{ij} \) for each element \( a_{ij} \) of the matrix \( A \). 1. **Cofactor \( C_{11} \)**: \[ C_{11} = \text{det}\begin{bmatrix} -2 & 1 \\ 3 & 0 \end{bmatrix} = (-2)(0) - (1)(3) = -3 \] 2. **Cofactor \( C_{12} \)**: \[ C_{12} = -\text{det}\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = -((0)(0) - (1)(-1)) = -1 \] 3. **Cofactor \( C_{13} \)**: \[ C_{13} = \text{det}\begin{bmatrix} 0 & -2 \\ -1 & 3 \end{bmatrix} = (0)(3) - (-2)(-1) = -2 \] 4. **Cofactor \( C_{21} \)**: \[ C_{21} = -\text{det}\begin{bmatrix} 2 & -2 \\ 3 & 0 \end{bmatrix} = -((2)(0) - (-2)(3)) = -6 \] 5. **Cofactor \( C_{22} \)**: \[ C_{22} = \text{det}\begin{bmatrix} 1 & -2 \\ -1 & 0 \end{bmatrix} = (1)(0) - (-2)(-1) = -2 \] 6. **Cofactor \( C_{23} \)**: \[ C_{23} = -\text{det}\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} = -((1)(3) - (2)(-1)) = -5 \] 7. **Cofactor \( C_{31} \)**: \[ C_{31} = \text{det}\begin{bmatrix} 2 & -2 \\ -2 & 1 \end{bmatrix} = (2)(1) - (-2)(-2) = -2 \] 8. **Cofactor \( C_{32} \)**: \[ C_{32} = -\text{det}\begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} = -((1)(1) - (-2)(0)) = -1 \] 9. **Cofactor \( C_{33} \)**: \[ C_{33} = \text{det}\begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix} = (1)(-2) - (2)(0) = -2 \] Now, we can write the cofactor matrix \( C \): \[ C = \begin{bmatrix} -3 & -1 & -2 \\ -6 & -2 & -5 \\ -2 & -1 & -2 \end{bmatrix} \] ### Step 4: Calculate the Adjoint Matrix The adjoint of matrix \( A \) is the transpose of the cofactor matrix \( C \): \[ \text{adj}(A) = C^T = \begin{bmatrix} -3 & -6 & -2 \\ -1 & -2 & -1 \\ -2 & -5 & -2 \end{bmatrix} \] ### Step 5: Calculate the Inverse of Matrix A Using the formula for the inverse: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values: \[ A^{-1} = \frac{1}{-1} \cdot \begin{bmatrix} -3 & -6 & -2 \\ -1 & -2 & -1 \\ -2 & -5 & -2 \end{bmatrix} = -\begin{bmatrix} -3 & -6 & -2 \\ -1 & -2 & -1 \\ -2 & -5 & -2 \end{bmatrix} \] \[ = \begin{bmatrix} 3 & 6 & 2 \\ 1 & 2 & 1 \\ 2 & 5 & 2 \end{bmatrix} \] ### Final Answer The inverse of the matrix \( A \) is: \[ A^{-1} = \begin{bmatrix} 3 & 6 & 2 \\ 1 & 2 & 1 \\ 2 & 5 & 2 \end{bmatrix} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

The inverse of the matrix [[3, -2, -1], [-4, 1, -1], [2, 0, 1]] is

The inverse of the matrix [[1, 0, 0], [2, 1, 0], [3, 3, 1]] is

Knowledge Check

  • The inverse of the matrix [[1, 2, -2], [-3, 0, -5], [2, 5, 0]] is

    A
    `(1)/(5)[[5, 10, -15], [-2, 4, 11], [-3, 1, 9]]`
    B
    `[[1, 2, -3], [-2, 4, 11], [-3, 1, 9]]`
    C
    `(-1)/(35)[[-25, -10, -15], [10, 4, 11], [-15, 1, 6]]`
    D
    `(1)/(35)[[25, -10, -15], [-10, 4, 11], [-15, 1,6]]`
  • The inverse of the matrix [[1, 0, 1], [0, 2, 3], [1, 2, 1]] is

    A
    `(-1)/(6)[[-4, 2, -2], [3, 0, -3], [-2, -2, 2]]`
    B
    `(1)/(6)[[-4, 2, -2], [3, 0, -3], [-2, -2, 2]]`
    C
    `[[-2, 1, -1], [1, 0, -1], [-2, -2, 2]]`
    D
    `[[2, -1, 1], [-1, 0, 1], [2, 2, -2]]`
  • The inverse of the matrix [[1, 2, 3], [0, 2, 4], [0, 0, 5]] is

    A
    `(1)/(5)[[5, -5, 1], [0, 5, -4], [0, 0, 2]]`
    B
    `(-1)/(5)[[5, -5, 1], [0, 5, -4], [0, 0, 2]]`
    C
    `(1)/(10)[[10, -10, 2], [0, 5, -4], [0, 0, 2]]`
    D
    `(-1)/(10)[[10, -10, 2], [0, 5, -4], [0, 0, 2]]`
  • Similar Questions

    Explore conceptually related problems

    The inverse of the matrix [[0, 1, 2], [1, 2, 3], [3, 1, 1]] is

    The inverse of the matrix [[2, 1, 3], [1, 0, 1], [1, 1, 1]] is

    The inverse of the matrix [[2, 0, -1], [5, 1, 0], [0, 1, 3]] is

    The inverse of the matrix [[1, 0, 0], [3, 3, 0], [5, 2, -1]] is

    The inverse of the matrix [[2, 0, 0], [0, 1, 0], [0, 0, -1]] is