Home
Class 11
PHYSICS
y=x^(2)+(1)/(x^(2)). Find (dy)/(dx)...

`y=x^(2)+(1)/(x^(2))`. Find `(dy)/(dx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = x^2 + \frac{1}{x^2} \) with respect to \( x \), we will apply the rules of differentiation step by step. ### Step 1: Identify the function We have: \[ y = x^2 + \frac{1}{x^2} \] ### Step 2: Rewrite the function The term \( \frac{1}{x^2} \) can be rewritten using negative exponents: \[ y = x^2 + x^{-2} \] ### Step 3: Differentiate each term Now we will differentiate each term separately using the power rule, which states that if \( y = x^n \), then \( \frac{dy}{dx} = n \cdot x^{n-1} \). 1. Differentiate \( x^2 \): \[ \frac{d}{dx}(x^2) = 2x \] 2. Differentiate \( x^{-2} \): \[ \frac{d}{dx}(x^{-2}) = -2x^{-3} \] ### Step 4: Combine the derivatives Now we can combine the results from the differentiation: \[ \frac{dy}{dx} = 2x - 2x^{-3} \] ### Step 5: Rewrite the result For clarity, we can rewrite \( -2x^{-3} \) back into fraction form: \[ \frac{dy}{dx} = 2x - \frac{2}{x^3} \] ### Final Answer Thus, the derivative of the function \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = 2x - \frac{2}{x^3} \] ---

To find the derivative of the function \( y = x^2 + \frac{1}{x^2} \) with respect to \( x \), we will apply the rules of differentiation step by step. ### Step 1: Identify the function We have: \[ y = x^2 + \frac{1}{x^2} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise dpp 2 PHYSICS|1 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise DPP NO. 5 Physics|6 Videos
  • CURRENT ELECTRICITY

    RESONANCE|Exercise Exercise|54 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE|Exercise Advanced Level Problems|9 Videos

Similar Questions

Explore conceptually related problems

y=(1)/(x^(2)) , find (dy)/(dx)

If y=(x+(1)/(x))^(x)+(x^(2)+1)/(x^(2)-1), find (dy)/(dx)

Knowledge Check

  • If y=(logx)^(cosx)+(x^(2)+1)/(x^(2)-1) , find (dy)/(dx).

    A
    `(logx)^(sinx).{(cosx)/(xlogx)-(sinx).(logx)}-(4x)/((x^(2)-1)^(2))`
    B
    `(logx)^(cosx).{(cosx)/(xlogx)-(cosx).(logx)}-(4x)/((x^(2)-1)^(2))`
    C
    `(logx)^(cosx).{(cosx)/(xlogx)-(sinx).(logx)}-(4x)/((x^(2)-1)^(2))`
    D
    `(logx)^(cosx).{(sinx)/(xlogx)-(sinx).(logx)}-(4x)/((x^(2)-1)^(2))`
  • Similar Questions

    Explore conceptually related problems

    y=x^(x cos x)+(x^(2)+1)/(x^(2)-1), find (dy)/(dx)

    If y=(x^(3)+x^(2)+x)/(1+x^(2)), find (dy)/(dx)

    If y=(x^(4)+x^(2)+1)/(x^(2)+x+1) find (dy)/(dx) =

    y=tan^(-1)((2x)/(1+15x^(2))) find (dy)/(dx)

    y= (cos^(-1)x)/(x^(2)+1) Find dy/dx

    y=(x^(2)+1)tan^(-l)x find (dy)/(dx)

    y=sqrt(x^(2)+1)-log((1)/(x)+sqrt(1+(1)/(x^(2)))), find (dy)/(dx)