Home
Class 11
MATHS
The range of the function f(x)=|x-1| is ...

The range of the function `f(x)=|x-1|` is
A. `(-oo,0)`
B. `[0,oo)`
C. `(0,oo)`
D. `R`

Text Solution

AI Generated Solution

To find the range of the function \( f(x) = |x - 1| \), we can analyze the function step by step. ### Step 1: Understanding the Absolute Value Function The function \( f(x) = |x - 1| \) represents the absolute value of \( x - 1 \). The absolute value function always outputs non-negative values, meaning \( f(x) \geq 0 \) for all \( x \). **Hint:** Recall that the absolute value of any expression is always greater than or equal to zero. ### Step 2: Finding the Minimum Value ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ELLIPSE

    RD SHARMA|Exercise Solved Examples And Exercises|97 Videos
  • GEOMETRIC PROGRESSIONS

    RD SHARMA|Exercise Solved Examples And Exercises|255 Videos

Similar Questions

Explore conceptually related problems

The domain of definition of the function f(x)="log"|x| is R b. (-oo,0) c. (0,oo) d. R-{0}

If expression x^2-4cx+b^2gt0 for all x epsilon R and a^2+c^2ltab then range of the function (x+a)/(x^2+bx+c^2) is (A) (0,oo) (B) (0,oo) (C) (-oo,oo) (D) none of these

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (1) (-oo,oo) (2) (0,oo (3) (-oo,""0) (4) (-oo,oo)"-"{0}

The range of the function f(x)=(e^(x)-e^(|z|))/(e^(x)+e^(|x|)) is (-oo,oo)(b)[0,1](-1,0](d)(-1,1)

The set of points where the function f(x)=x|x| is differentiable is (-oo,oo)(b)(-oo,0)uu(0,oo)(0,oo)(d)[0,oo)

The set of points where the function f(x)=x|x| is differentiable is (a)(-oo,oo) (b) (-oo,0)uu(0,oo)(c)(0,oo)(d)[0,oo]

The interval of increase of the function f(x)=x-e^(x)+tan(2 pi/7) is (a) (0,oo)(b)(-oo,0)(c)(1,oo)(d)(-oo,1)

If the range of the function f(x)=3x^(2)+bx+c is [0,oo) then value of (b^(2))/(3c) is

Range of the function f(x)=(ln x)/(sqrt(x)) is (a) (-oo,\ e) (b) (-oo,\ e^2) (c) (-oo,2/e) (d) (-oo,1/e)

Without using the derivative,show that the function f(x)=|x| is (a) strictly increasing in (0,oo)( b) strictly decreasing in (-oo,0)