Home
Class 11
MATHS
In any triangle A B C , prove that: \ a^...

In any triangle `A B C ,` prove that: `\ a^3sin(B-C)+b^3sin(C-A)+c^3sin(A-B)=0`

Text Solution

AI Generated Solution

To prove that \( a^3 \sin(B - C) + b^3 \sin(C - A) + c^3 \sin(A - B) = 0 \) in any triangle \( ABC \), we can use the sine rule and some trigonometric identities. Here’s a step-by-step solution: ### Step 1: Use the Sine Rule According to the sine rule, we have: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k \] where \( k \) is a constant. Thus, we can express \( a, b, c \) in terms of \( k \): ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SETS

    RD SHARMA|Exercise Solved Examples And Exercises|218 Videos
  • SOME SPECIAL SERIES

    RD SHARMA|Exercise Solved Examples And Exercises|69 Videos

Similar Questions

Explore conceptually related problems

In any triangle ABC,prove that a sin (B-C)+b sin(C-A)+c sin(A-B)=0

In any triangle ABC, prove that: a sin(B-C)+bs in(C-A)+c sin(A-B)=0

In any triangle ABC, prove that: (a^(2)sin(B-C))/(sin B+sin C)+(b^(2)sin(C-A))/(sin C+sin A)+(c^(2)sin(A-B))/(sin A+sin B)=0

In any triangle ABC , prove that a sin A-b sin B -=c sin (A-B) .

In any triangle ABC, prove that following: b sin B-C sin C=a sin(B-C)

In a triangle ABC, prove b sin B-c sin C=a sin(B-C)

In any triangle ABC,prove that sin^(3)A cos(B-C)+sin^(3)B cos(C-A)+sin^(3)C cos(A-B)=3sin A sin B sin C

In any triangle ABC, prove that: (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

In any triangle ABC, prove that following: (a^(2)sin(B-C))/(s in A)+(b^(2)sin(C-A))/(s in B)+(c^(2)sin(A-B))/(s in C)=0

In a triangle ABC, prove that :a sin((A)/(2)+B)=(b+c)sin((A)/(2))