Home
Class 11
MATHS
Show that the following lines are concur...

Show that the following lines are concurrent: `L_1=(a-b)x+(b-c)y+(c-a)=0` `L_2=(b-c)x+(c-a)y+(a-b)=0` `L_3=(c-a)x+(a-b)y+(b-c)=0`

Text Solution

Verified by Experts

Given,`(a−b)x+(b−c)y+a−c=0`
`(b−c)x+(c−a)y+b−a=0`
`(c−s)x+(a−b)y+c−b=0`
For these to be concurrent
​`|[a−b, b−c, c−a],[​b−c, c−a , a−b],[ a−c, b−a, c−b]|​=0 `
`R_1​→R_1​+R_2​+R_3`
...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THE CIRCLE

    RD SHARMA|Exercise Solved Examples And Exercises|144 Videos
  • TRANSFORMATION FORMULAE

    RD SHARMA|Exercise Solved Examples And Exercises|145 Videos

Similar Questions

Explore conceptually related problems

L_1=(a-b)x+(b-c)y+(c-a)=0L_2=(b-c)x+(c-a)y+(a-b)=0L_3=(c-a)x+(a-b)y+(b-c)=0 KAMPLE 6 Show that the following lines are concurrent L1 = (a-b) x + (b-c)y + (c-a) = 0 12 = (b-c)x + (c-a) y + (a-b) = 0 L3 = (c-a)x + (a-b) y + (b-c) = 0. ,

The system of equations (a-b) x+(b-c) y +(c - a) z=0 (b-c) x+(c - a) y +(a-b) z=0 (c- a) x+(a-b) y +(b-c) z=0 has no trivial solution.

If (log x)/(b-c)=(log y)/(c-a)=(log z)/(a-b), then which of the following is/are true? zyz=1 (b) x^(a)y^(b)z^(c)=1x^(b+c)y^(c+b)=1( d) xyz=x^(a)y^(b)z^(c)

Show that the straight lines L_(1)=(b+c)x+ay+1=0,L_(2)=(c+a)x+by+1=0ndL_(3)=(a+b)x+cy+1 are concurrent.

If (x)/(b+c-a)=(y)/(c+a-b)=(z)/(a+b-c) show that (b-c)x+(c-a)y+(a-b)z=0

If x=b-c+a, y=c-a+b, z=a-b+c , then prove that (b-a) x + (c-b)y +(a-c)z=0

The solutions of the equations, where a+b+c ne 0 (b+c) (y+z) -ax =b-c (c+a) (z+x)-by =c-a (a+b)(x+y)-cz =a-b are ….

The equation of the plane through the intersection of the plane a x+b y+c z+d=0\ a n d\ l x+m y+n+p=0 and parallel to the line y=0,\ z=0. (A) (b l-a m)y+(c l-a n)z+d l-a p=0 (B) (a m-b l)x+(m c-b n)z+m d-b p=0 (c) (n a-c l)d+(b n-c m)y+n d-c p=0 (D) None of these

If the straight lines x+y-2-0,2x-y+1=0 and a x+b y-c=0 are concurrent, then the family of lines 2a x+3b y+c=0(a , b , c) are nonzero) is concurrent at (a) (2,3) (b) (1/2,1/3) (c) (-1/6,-5/9) (d) (2/3,-7/5)

If the lines 3x+2y-5=0,2x-5y+3=0,5x+by+c=0 are concurrent then b+c=