Evaluate the following limit: `lim_(x->0)(x(2^x-1))/(1-cos x)`
Text Solution
AI Generated Solution
To evaluate the limit \( L = \lim_{x \to 0} \frac{x(2^x - 1)}{1 - \cos x} \), we can follow these steps:
### Step 1: Check the form of the limit
First, we substitute \( x = 0 \) directly into the limit:
\[
L = \frac{0(2^0 - 1)}{1 - \cos(0)} = \frac{0(1 - 1)}{1 - 1} = \frac{0}{0}
\]
...
Topper's Solved these Questions
INTRODUCTIONS TO 3-D COORDINATE GEOMETRY
RD SHARMA|Exercise Solved Examples And Exercises|114 Videos
LINEAR INEQUATIONS
RD SHARMA|Exercise Solved Examples And Exercises|163 Videos
Similar Questions
Explore conceptually related problems
Evaluate the following limits : lim_(x to 0)(x(2^(x)-1))/(1-cosx) .
Evaluate the following limits: lim_(xrarr0)(cos2x-1)/(cosx-1)
Evaluate the following limit: (lim)_(x->0)(e^(sinx)-1)/x
Evaluate the following limits: lim_(xrarr0)((2^(x)-1)/(x))
Evaluate the following limits: lim_(xrarr0)(x cot2x)
Evaluate the following limit: (lim)_(x rarr0)(cos2x-1)/(cos x-1)
Evaluate the following limits: lim_(xrarr0)((1-cos2x))/((1-cos6x))
Evaluate the following limit: (lim)_(x rarr0)(x^(2)+1-cos x)/(x sin x)
Evaluate the following limit: (lim)_(x->0)(1-"cos"(1-cos x))/(sin^4x)
Evaluate the following limit: (lim)_(x->0)(1-cos m x)/(1-cos n x)