Home
Class 12
PHYSICS
Two rigid bodies A and B rotate with rot...

Two rigid bodies A and B rotate with rotational kinetic energies `E_(A)` and `E_(B)` respectively. The moments of inertia of A and B about the axis of rotation are `I_(A)` and `I_(B)` respectively. If `I_(A) = I_(B)//4` and E_(A)= 100 E_(B), the ratio of angular momentum (L_(A)) of A to the angular momentum (L_(B)) of B is

A

25

B

5//4

C

5

D

1//4

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Two solid spheres A and B each of radius R are made of materials of densities rho_A and rho_B respectively. Their moments of inertia about a diameter are I_A and I_B respectively. The value of I_A/I_B is

The moment of inertia and angular momentum of a rotating body are I and L, respectively. Then, (L^(2))/(2I) represents its

Knowledge Check

  • Two rigid bodies A and B rotate with angular momenta L_(A) and L_(B) respectively. The moments of inertia of A and B about the axes of rotation are I_(A) and I_(B) respectively. If I_(A)=I_(B)//4 and L_(A)=5L_(B) , then the ratio of rotational kinetic energy K_(A) of A to the rotational kinetic energy K_(B) of B is given by

    A
    `(K_(A))/(K_(B))=25/4`
    B
    `(K_(A))/(K_(B))=5/4`
    C
    `(K_(A))/(K_(B))=1/4`
    D
    `(K_(A))/(K_(B))=100`
  • The moment of inertia of two freely rotating bodies A and B are l_(A) and l_(B) respectively. l_(A) gt l_(B) and their angular momenta are equal. If K_(A) and K_(B) are their kinetic energies,then

    A
    `K_(A)=K_(B)`
    B
    `kK_(A) ne K_(B)`
    C
    `K_(A) lt K_(B)`
    D
    `K_(A)=2K_(B)`
  • The rotational kinetic energy of a body is E and its moment of inertia is I . The angular momentum is

    A
    `EI`
    B
    `2 sqrt((EI))`
    C
    `sqrt((2EI))`
    D
    `(E)/(I)`
  • Similar Questions

    Explore conceptually related problems

    The moments of inertia of two rotating bodies A and B are I_(A) and I_(B). (I_(A) gt I_(B)) and their angular momenta are equal. Which one has greater K.E. ?

    The moment of inertia of a rigid body in terms of its angular momentum L and kinetic energy K is

    The rotational kinetic energy of a rigid body of moment of inertia 5 kg-m^(2) is 10 joules. The angular momentum about the axis of rotation would be -

    The moments of inertia of two rotating bodies A and B are I_(A) and I_(B) (I_(A) gt I_(B) ). If their angular momenta are equal, then

    Two circular loops A and B of radii R and 2R respectively are made of the similar wire. Their moments of inertia about the axis passing through the centre of perpendicular to their plane are I_(A)" and "I_(B) respectively. The ratio (I_(A))/(I_(B)) is :